Concretely efficient secure multi-party computation protocols - survey and more

具体有效的安全多方计算协议:调查和更多

安全的多方计算(MPC)允许一组当事人在他们的隐私输入上联合计算一个函数,并且除了函数的输出外什么都不透露。在过去的十年中,MPC 已经从一个纯粹的理论研究迅速转变成一个具有实际意义的对象,人们对实际应用的兴趣越来越大,如保护隐私的机器学习(PPML)。在本文中,我们全面调查了在不诚实多数和诚实多数情况下,具有半诚实和恶意安全的具体有效的 MPC 协议的现有工作。我们重点考虑有中止的安全概念,也就是说,腐败的一方可以阻止诚实的一方在收到输出后收到输出。我们提出了设计不同风格的 MPC 协议的基本和关键方法的高层次想法,以及 MPC 的关键构建模块。对于 MPC 的应用,我们比较了已知的建立在 MPC 上的 PPML 协议,并描述了最先进的 PPML 协议的私有推理和训练的效率。此外,我们总结了几个挑战和开放性问题,以突破 MPC 协议的效率,以及一些有趣的未来工作,值得被解决。这项调查的目的是向那些对了解、改进和应用具体的高效 MPC 协议感兴趣的研究人员提供 MPC 的最新发展和关键方法。

1 介绍

2 预备工作

3 基于秘密共享的 MPC 协议

4 基于混淆电路的恒圆 MPC

5 不经意传输和不经意线性函数评估

在本节中,我们描述了不经意传输(OT)及其重要变体(即随机 OT 和相关 OT)的最新发展和技术。此外,我们还介绍了 OT 的算术泛化,即不经意线性函数评估(OLE)及其重要变体(即 VOLE)。OT 主要用于布尔电路的 MPC 协议,而 OLE 主要应用于算术电路的 MPC 协议。在这项调查中,我们主要回顾了构建(相关)OT 的最先进技术,并对设计(矢量)OLE 的技术进行了简明的概述。请注意,OLE 与 OT 具有相同的重要性。此外,对于基于带噪学习奇偶性(LPN)的最先进技术来说,矢量 OLE 可以在与相关 OT 相同的框架内设计。我们注意到,同态加密(HE)是产生(矢量)OLE 相关性的关键技术,尽管在本节中没有详细描述它。与基于 HE 的线性通信复杂性相比,最近基于 LPN 变体的技术允许获得亚线性通信复杂性。

5.1 不经意传输

不经意传输(OT)[95,96] 是发送方 和接收方 之间的一个基本加密原语,它使 只能获得 的两个输入信息中的一个,而 的选择位一无所知。它不仅可以用来构建姚氏两方安全计算协议,还可以用来构建很多其他具有半诚实和恶意安全的 MPC 协议。此外,OT 还可以用来设计很多其他种类的加密协议。OT 协议可以从不同的密码学假设中构建,包括决策性 Diffie-Hellman(DDH)[241-245]、计算性 DiffieHellman(CDH)[244, 246-248]、带错误学习(LWE)[242, 245, 249-251]、带噪声学习奇偶性(LPN)[247] 和交换性超同构 Diffie-Hellman(CSIDH)[252]。然而,当需要产生大量的 OT 关联时(特别是对于 MPC 应用),这些基于公钥操作的 OT 协议非常昂贵。为了处理这个问题,Beaver [253] 引入了 OT 扩展的概念,在这个概念中,使用快速操作将少量的基础 OT 有效地扩展到大量的 OT(甚至是任意多项式数的 OT)。Beaver [253] 的第一个 OT 扩展协议以非黑箱方式使用了伪随机发生器(PRG),因此只在理论上有意义。目前,具体有效的 OT 扩展协议分为两种风格:一种是基于 IKNP 框架 [130],另一种是 PCG 框架 [162, 254]。IKNP 风格的协议采用对称密钥的原始 PRG 来进行扩展,并支持选择位,而 PCG 风格的协议则利用 LPN 问题中噪声的稀疏特征 [255] 来实现扩展,并且只允许随机选择位。两种风格的 OT 扩展都采用以下结构,从弱 OT 到标准 OT: 其中 COT 要求发送方的两个消息 满足固定的相关关系(即,对于固定的字符串 ),ROT 只允许输出两个均匀的随机消息,而 OT 允许输入任意的两个消息。这两种转换(即 )都是标准的,回顾如下:

……

因此,我们可以专注于设计具体有效的 COT 协议,然后将其转化为标准的 OT 协议。此外,COT 协议能够被用来使用类似 TinyOT 的协议 [104, 106-110] 产生 BDOZ 式的认证共享,以及使用比特分解思想产生 SPDZ 式的认证共享 [43, 150]。对于具有自由 XOR 的 GCs,电路中每条线的乱码标签都满足 COT 的相关性,因此可以使用 COT 协议从乱码者向评估者无意识地传输,也就是说,COT 也可以直接用于 MPC 协议。

半诚实的 IKNP 协议 [130](在 [113] 中改进)的工作原理大致如下。1)通过切换发送方和接收方的角色,在设置阶段执行一个 baseOT 协议(依赖于公钥操作)以产生 个 ROT 关联,然后 2)在扩展阶段将 个 ROT 关联扩展为大量的 COT 关联,使用 PRG 并将列向量切换为行向量。当使用相同的设置阶段时,扩展阶段可以迭代执行以产生无限数量的 COT 关联 [113]。后来,在 [135,136] 中提出了具有恶意安全的 IKNP 式 OT 扩展协议。使用随机线性组合方法,Keller, Orsini, and Scholl [136] 提出的恶意安全协议在 IKNP 框架中实现了最好的效率,并且其通信成本与最著名的半诚实协议 [113] 相匹配。虽然 IKNP 式的 OT 扩展协议享有快速计算,但它们需要线性通信成本(即每个 COT 相关的 比特)。

……

5.2 不经意线性函数评估

OLE:不经意线性函数评估(OLE)是 OT 的算术泛化,对于设计大领域算术电路的 MPC 协议特别有用 [120,146,262-264]。特别是,OLE 直接给出了两个秘密值的乘法的两方加法共享。因此,通过成对的 OLE 协议执行,我们可以使用 OLE 来生成 Beaver 乘法三元组,而无需在多方设置中进行认证。OLE 可以使用 OT 扩展和 Gilboa 乘法的方法来构建 [43, 150],并且具有便宜的计算成本,但通信成本高得多。存在一种标准的方法来设计 OLE,即使用基于 RLWE 的加法同态加密(AHE),该方法已被用于 Overdrive [152] 和最近的工作 [265],其中接收方 发送 给发送方 ,然后 计算 并将其发送给 ,后者解密得到 的大域 ,这里,AHE 需要满足电路隐私属性。此外,OLE 也可以从某种程度的同态加密中构建 [103, 149],但将需要更大的通信。不依赖同态加密,OLE 也能够直接从 Ring-WE [266, 267] 构建。此外,我们还可以从 OT 和噪声 Reed-Solomon 编码 [97, 264, 268],或 Paillier 加密 [269] 中构建 OLE 协议。在所有的 OLE 协议中,基于 AHE 的协议 [152, 265] 获得了最好的通信效率,而来自 RLWE 的协议 [266] 具有最佳的一轮通信。

最近,Boyle 等人 [162] 提出了一个直接基于 LPN 的 OLE 构造,它比上述 OLE 协议具有非常低的通信成本,但在生成 个 OLE 关联时需要至少 的计算成本。后来,他们 [161] 使用环 LPN 假设的变体解决了计算问题,并构建了一个用于计算大量 OLE 关联的 OLE 协议。这个 OLE 协议比基于 RLWE 的协议具有非常低的通信成本,并提供了 的计算复杂性。他们的基于环 LPN 的 PCG 方法是产生大量 OLE 相关的好方法(例如, )。对于少量的 OLE 关联,基于 RLWE 的方法可能更好。基于环 LPN,产生的 OLE 相关性是随机的(即 是均匀随机的),但是足以设计 MPC 协议,其中只需要在预处理阶段产生随机的乘法三元组。

VOLE:向量不经意线性函数评估(VOLE)是 COT 在大域的算术泛化,定义如下:

  • 发送方持有一个统一的全局密钥
  • 对于每个 VOLE 的执行,发送方得到一个向量 ,接收方得到两个向量 ,这样

我们有一个使用 CRHFs 从 COT 到 OT 的标准转换 [130]。这对 VOLE 和 OLE 来说不是这样的,因为底层字段 很大,发送方不能列举所有可能的值 。与 OLE 类似,VOLE 可以基于 OT 扩展 [43] 或 AHE [152, 265] 建立,其中后者的通信量较低。基于 AHE 的 VOLE 协议 [152, 265] 的通信复杂性与 VOLE 的输出长度成线性关系。基于 LPN 假设,PCG 方法 [254] 可以构建具有亚线性通信的 VOLE 协议,并且是产生大量 VOLE 关联的最有希望的方法(例如,N≥105)。随后,这种方法在 [69, 132-134, 162, 256, 260] 中被进一步优化。这些基于 LPN 的 VOLE 协议之间的效率和安全性比较与上一小节中显示的 COT 情况类似。

最先进的 VOLE 协议 [69, 133] 与最著名的基于双 LPN 或原始 LPN 的 COT 协议 [133, 134] 采用相同的框架,只是在单点 VOLE 协议执行中需要生成一个额外的 VOLE 相关,因为单个非零元素在大场 F 中是均匀的而不是等于 1。此外,对于 VOLE,我们需要在大场 F 而不是 F2 上使用 LPN 假设。 我们能够使用基于 AHE 的 VOLE 协议 [152, 265] 在设置阶段产生 VOLE 相关。此外,我们可以使用 PCF 方法在 VDLPN 假设下生成 VOLE 相关 [256],如果生成的 VOLE 相关的数量非常大,可能比 PCG 方法有效率优势。与 COT 的情况类似,我们可以使用最先进的一致性检查 [69, 134] 来构建恶意安全的 VOLE 协议。

6 MPC 在机器学习中的应用

7 结论和未来工作

参考文献

  1. Beaver D, Micali S and Rogaway P. The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC. ACM Press, 1990, 503–13.
  2. Ben-Or M, Goldwasser S and Wigderson A. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC. ACM Press, 1988, 1–10.
  3. Chaum D, Cre ́peau C and Damga ̊rd I. Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC. ACM Press, 1988, 11–19.
  4. Goldreich O, Micali S and Wigderson A. How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho A (ed.). 19th ACM STOC. ACM Press, 1987, 218–29.
  5. Rabin T and Ben-Or M. Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st ACM STOC. ACM Press, 1989, 73–85.
  6. Yao AC-C. How to generate and exchange secrets (extended abstract). In: 27th FOCS. IEEE Computer Society Press, 1986, 162–7.
  7. Demmler D, Schneider T and Zohner M. ABY – A framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015. The Internet Society, 2015.
  8. Wang X, Malozemoff AJ and Katz J. EMP-toolkit: Efficient MultiParty Computation Toolkit. https://github.com/ emp-toolkit, 2016.
  9. Alexandra Institute. FRESCO – A FRamework for Efficient Secure COmputation. https://github.com/aicis/fresco.
  10. Multiparty.org Development Team. Javascript Implementation of Federated Functionalities, 2020. https://github. com/multiparty/jiff .
  11. Data61. Mp-spdz. https://github.com/data61/MP-SPDZ, 2019.
  12. Schoenmakers B. MPyC: Secure Multiparty Computation in Python https://github.com/lschoe/mpyc.
  13. Aly A, Keller M and Orsini E et al. SCALE-MAMBA v1.14: Documentation, 2021. https://github.com/ KULeuven-COSIC/SCALE-MAMBA.
  14. Bogdanov D, Laur S and Willemson J. Sharemind: A framework for fast privacy-preserving computations. In: Jajodia S and L ́opez J (eds.). ESORICS 2008, volume 5283 of LNCS. Heidelberg: Springer, 2008, 192–206.
  15. Songhori EM, Hussain SU and Sadeghi A-R et al. TinyGarble: highly compressed and scalable sequential garbled circuits. In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2015, 411–28.
  16. Hastings M, Hemenway B and Noble D et al. SoK: General purpose compilers for secure multi-party computation. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1220–37.
  17. Keller M. MP-SPDZ: A versatile framework for multi-party computation. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1575–90.
  18. Agrawal N, Shahin Shamsabadi A and Kusner MJ et al. QUOTIENT: Two-party secure neural network training and prediction. In: Cavallaro L, Kinder J, Wang X, Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1231–47.
  19. Chaudhari H, Rachuri R and Suresh A. Trident: Efficient 4PC framework for privacy preserving machine learning. In: NDSS 2020. The Internet Society, 2020.
  20. Juvekar C, Vaikuntanathan V and Chandrakasan A. GAZELLE: A low latency framework for secure neural network inference. In: Enck W and Felt AP (eds.). USENIX Security 2018. USENIX Association, 2018, 1651–69.
  21. Kumar N, Rathee M and Chandran N et al. CrypTFlow: secure TensorFlow inference. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2020, 336–53.
  22. Mishra P, Lehmkuhl R and Srinivasan A et al. Delphi: A cryptographic inference service for neural networks. In: Capkun S and Roesner F (eds.). USENIX Security 2020. USENIX Association, 2020, 2505–22.
  23. Mohassel P and Rindal P. ABY3: A mixed protocol framework for machine learning. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 35–52.
  24. Mohassel P and Zhang Y. SecureML: A system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2017, 19–38.
  25. Patra A, Schneider T and Suresh A et al. ABY2.0: Improved Mixed-protocol Secure Two-party Computation. Cryptology ePrint Archive, Report 2020/1225, 2020. https://eprint.iacr.org/2020/1225.
  26. Patra A and Suresh A. BLAZE: Blazing fast privacy-preserving machine learning. In: NDSS 2020. The Internet Society, 2020.
  27. Rathee D, Rathee M and Goli RKK et al. SIRNN: A Math Library for Secure RNN Inference. Cryptology ePrint Archive, Report 2021/459, 2021. https://eprint.iacr.org/2021/459.
  28. Rathee D, Rathee M and Kumar N et al. CrypTFlow2: practical 2-party secure inference. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 325–42.
  29. Riazi M S, Samragh M and Chen H et al. XONN: XNOR-based oblivious deep neural network inference. In: Heninger N and Traynor P (eds.). USENIX Security 2019. USENIX Association, 2019, 1501–18.
  30. Schoppmann P, Gasc ́ on A and Raykova M et al. Make some ROOM for the zeros: data sparsity in secure distributed machine learning. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1335–50.
  31. Tan S, Knott B and Tian Y et al. CryptGPU: fast privacy-preserving machine learning on the GPU. In: IEEE Symposium on Security and Privacy, 2021.
  32. Brunetta C, Tsaloli G and Liang B et al. Non-interactive, secure verifiable aggregation for decentralized, privacypreserving learning. Cryptology ePrint Archive, Report 2021/654, 2021. https://eprint.iacr.org/2021/654.
  33. Fereidooni H, Marchal S and Miettinen M et al. SAFELearn: Secure Aggregation for private FEderated Learning. Cryptology ePrint Archive, Report 2021/386, 2021. https://eprint.iacr.org/2021/386.
  34. Han K, Jeong J and Sohn JH et al. Efficient privacy preserving logistic regression inference and training. Cryptology ePrint Archive, Report 2020/1396, 2020. https://eprint.iacr.org/2020/1396.
  35. Zheng W, Deng R and Chen W et al. Cerebro: A Platform for Multi-party Cryptographic Collaborative Learning. Cryptology ePrint Archive, Report 2021/759, 2021. https://eprint.iacr.org/2021/759.
  36. Zheng Q, Popa RA and Gonzalez JE et al. Helen: maliciously secure coopetitive learning for linear models. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 724–38.
  37. Bogdanov D, Niitsoo M and Toft T et al. High-performance secure multi-party computation for data mining applications. Int J Inf Secur 2012; 11: 403–18.
  38. Burkhart M, Strasser M and Many D et al. SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security 2010. USENIX Association, 2010, 223–40.
  39. Cramer R, Damg ̊ard IB and Nielsen JB. Secure Multiparty Computation and Secret Sharing. Cambridge University Press, 2015.
  40. Lindell Y and Pinkas B. Privacy preserving data mining. J Cryptol 2002; 15: 177–206.
  41. Ben-David A, Nisan N and Pinkas B. FairplayMP: A system for secure multi-party computation. In: Ning P, Syverson PF and Jha S (eds.). ACM CCS 2008. ACM Press, 2008, 257–66.
  42. Bogetoft P, Christensen DL and Damg ̊ard I et al. Secure multiparty computation goes live. In: Dingledine R and Golle P (eds.). FC 2009, volume 5628 of LNCS. Heidelberg: Springer, 2009, 325–43
  43. Keller M, Orsini E and Scholl P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 830–42.
  44. Cho H, Wu DJ and Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol 2018; 36: 547–51.
  45. Jagadeesh KA, Wu DJ and Birgmeier JA et al. Deriving genomic diagnoses without revealing patient genomes. Science 2017; 357: 692–5.
  46. Jha S, Kruger L and Shmatikov V. Towards practical privacy for genomic computation. In: 2008 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2008, 216–30.
  47. Archer DW, Bogdanov D and Lindell Y et al. From keys to databases – real-world applications of secure multi-party computation. Comput J 2018; 61: 1749–71.
  48. Almashaqbeh G and Solomon R. Sok: Privacy-preserving computing in the blockchain era. Cryptology ePrint Archive, Report 2021/727, 2021. https://eprint.iacr.org/2021/727.
  49. Atapoor S, Smart NP and Alaoui YT. Private liquidity matching using MPC. Cryptology ePrint Archive, Report 2021/475, 2021. https://eprint.iacr.org/2021/475.
  50. Banerjee A, Clear M and Tewari H. zkhawk: Practical private smart contracts from MPC-based hawk. Cryptology ePrint Archive, Report 2021/501, 2021. https://eprint.iacr.org/2021/501.
  51. Dolev S and Wang Z. Sodsmpc: FSM based anonymous and private quantum-safe smart contracts. Cryptology ePrint Archive, Report 2020/1346, 2020. https://eprint.iacr.org/2020/1346.
  52. El Defrawy K and Lampkins J. Founding digital currency on secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS’14. Association for Computing Machinery, 2014, 1–14.
  53. Green M and Miers I. Bolt: Anonymous payment channels for decentralized currencies. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 473–89.
  54. Ames S, Hazay C and Ishai Y et al. Ligero: Lightweight sublinear arguments without a trusted setup. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 2087–2104.
  55. Bhadauria R, Fang Z and Hazay C et al. Ligero++: A new optimized sublinear IOP. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 2025–38.
  56. Chase M, Derler D and Goldfeder S et al. Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 1825–1842
  57. De Saint Guilhem CD, Orsini E and Tanguy T. Limbo: Efficient zero-knowledge mpcith-based arguments. Cryptology ePrint Archive, Report 2021/215, 2021. https://ia.cr/2021/215.
  58. Giacomelli I, Madsen J and Orlandi C. ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz T and Savage S (eds.). USENIX Security 2016. USENIX Association, 2016, 1069–83.
  59. Gvili Y, Scheffler S and Varia M. Booligero: Improved sublinear zero knowledge proofs for Boolean circuits. Cryptology ePrint Archive, Report 2021/121, 2021. https://eprint.iacr.org/2021/121.
  60. Ishai Y, Kushilevitz E and Ostrovsky R et al. Zero-knowledge from secure multiparty computation. In: Johnson DS and Feige U (eds.). 39th ACM STOC. ACM Press, 2007, 21–30.
  61. Katz J, Kolesnikov V and Wang X. Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 525–37.
  62. Baum C, Braun L and Munch-Hansen A et al. Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k . Cryptology ePrint Archive, Report 2021/750, 2021. https://eprint.iacr.org/2021/750.
  63. Baum C, Malozemoff AJ and Rosen M et al. Mac’n’cheese: Zero-knowledge proofs for arithmetic circuits with nested disjunctions. Cryptology ePrint Archive, Report 2020/1410, 2020. https://eprint.iacr.org/2020/1410.
  64. Dittmer S, Ishai Y and Ostrovsky R. Line-point zero knowledge and its applications. Cryptology ePrint Archive, Report 2020/1446, 2020. https://eprint.iacr.org/2020/1446.
  65. Frederiksen TK, Nielsen JB and Orlandi C. Privacy-free garbled circuits with applications to efficient zero-knowledge. In: Oswald E and Fischlin M (eds.) EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 191–219.
  66. Heath D and Kolesnikov V. Stacked garbling for disjunctive zero-knowledge proofs. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part III, volume 12107 of LNCS. Heidelberg: Springer, 2020, 569–98.
  67. Jawurek M, Kerschbaum F and Orlandi C. Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 955–66.
  68. Kondi Y and Patra A. Privacy-free garbled circuits for formulas: size zero and information-theoretic. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 188–222.
  69. Weng C, Yang K, Katz J and Wang X. Wolverine: Fast, Scalable, and Communication-efficient Zero-knowledge Proofs for Boolean and Arithmetic Circuits. IEEE Computer Society Press, 2021.
  70. Weng C, Yang K and Xie X et al. Mystique: Efficient Conversions for Zero-knowledge Proofs with Applications to Machine Learning. Cryptology ePrint Archive, Report 2021/730, 2021. https://eprint.iacr.org/2021/730.
  71. Yang K, Sarkar P and Weng C et al. Quicksilver: Efficient and Affordable Zero-knowledge Proofs for Circuits and Polynomials Over Any Field. Cryptology ePrint Archive, Report 2021/076, 2021. https://eprint.iacr.org/2021/076.
  72. Canetti R, Gennaro R and Goldfeder S et al. UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1769–87.
  73. Chen M, Cohen R and Doerner J et al. Multiparty generation of an RSA modulus. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part III, volume 12172 of LNCS. Heidelberg: Springer, 2020, 64–93.
  74. Chen M, Hazay C and Ishai Y et al. Diogenes: Lightweight scalable RSA modulus generation with a dishonest majority. Cryptology ePrint Archive, Report 2020/374, 2020. https://eprint.iacr.org/2020/374.
  75. Doerner J, Kondi Y and Lee E et al. Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2018, 980–997.
  76. Doerner J, Kondi Y and Lee E et al. Threshold ECDSA from ECDSA assumptions: The multiparty case. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1051–66.
  77. Frederiksen TK, Lindell Y and Osheter V et al. Fast distributed RSA key generation for semi-honest and malicious adversaries. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part II, volume 10992 of LNCS. Heidelberg: Springer, 2018, 331–61.
  78. Hazay C, Mikkelsen G and Rabin T et al. Efficient RSA key generation and threshold paillier in the two-party setting. J Cryptol 2019; 32: 265–323.
  79. Lindell Y and Nof A. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 1837–54.
  80. Garimella G, Pinkas B and Rosulek M et al. Oblivious key-value stores and amplification for private set intersection. In: Malkin T and Peikert C (eds.). Advances in Cryptology – CRYPTO 2021, volume 12826 of LNCS. Springer International Publishing, 2021, 395–425.
  81. Pinkas B, Rosulek M and Trieu N et al. SpOT-light: lightweight private set intersection from sparse OT extension. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 401–31.
  82. Pinkas B, Rosulek M and Trieu N et al. PSI from PaXoS: fast, malicious private set intersection. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 739–67.
  83. Pinkas B, Schneider T and Tkachenko O et al. Efficient circuit-based PSI with linear communication. In: Ishai Y and Rijmen V (eds.). EUROCRYPT 2019, Part III, volume 11478 of LNCS. Heidelberg: Springer, 2019, 122–53.
  84. Pinkas B, Schneider T and Weinert C et al. Efficient circuit-based PSI via cuckoo hashing. In: Nielsen JB and Rijmen V (eds.). EUROCRYPT 2018, Part III, volume 10822 of LNCS. Heidelberg: Springer, 2018, 125–57.
  85. Rindal P and Schoppmann P. VOLE-PSI: fast OPRF and Circuit-PSI from Vector-OLE. In: Canteaut A and Standaert F-X (eds.). Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 901–30.
  86. Cleve R. Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th ACM STOC. ACM Press, 1986, 364–69.
  87. Araki T, Furukawa J and Lindell Y et al. High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC, Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 805–17.
  88. Lindell Y. Secure multiparty computation. Commun ACM 2020; 64: 86–96.
  89. Orsini E. Efficient, actively secure MPC with a dishonest majority: a survey. In: Bajard JC and Topuzo ̆ glu A (eds.). International Workshop on the Arithmetic of Finite Fields – WAIFI 2020, volume 12542 of LNCS. Springer International Publishing, 2021, 42–71.
  90. Canetti R. Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS. IEEE Computer Society Press, 2001, 136–145.
  91. Goldreich O. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge University Press, 2004.
  92. Canetti C. Security and composition of multiparty cryptographic protocols. J Cryptol 2000; 13: 143–202.
  93. Kushilevitz E, Lindell Y and Rabin T. Information-theoretically secure protocols and security under composition. In: Kleinberg JM (ed.). 38th ACM STOC. ACM Press, May 2006, 109–18.
  94. Goldwasser S and Lindell Y. Secure multi-party computation without agreement. J Cryptol 2005; 18: 247–87.
  95. Even S, Goldreich O and Lempel A. A randomized protocol for signing contracts. Commun ACM 1985; 28: 637–47.
  96. Rabin MO. How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81, Aiken Computation Laboratory, Harvard University, 1981.
  97. Naor M and Pinkas B. Oblivious transfer and polynomial evaluation. In: 31st ACM STOC. ACM Press, 1999, 245–54.
  98. Shamir A. How to share a secret. Commun ACM 1979; 22: 612–3.
  99. Cramer R, Damg ̊ard I and Ishai Y. Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian J (ed.). TCC 2005, volume 3378 of LNCS. Heidelberg: Springer, 2005, 342–62.
  100. Ito M, Saito A and Nishizeki T. Secret sharing scheme realizing general access structure. Electron Commun Jpn III 1989; 72: 56–64.
  101. Lindell Y and Nof A. A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 259–76.
  102. Dessouky G, Koushanfar F and Sadeghi A-R et al. Pushing the communication barrier in secure computation using lookup tables. In: NDSS 2017. The Internet Society, 2017.
  103. Damga ̊rd I, Pastro V, Smart NP and Zakarias S. Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 643–62.
  104. Nielsen JB, Nordholt PS and Orlandi C et al. A new approach to practical active-secure two-party computation. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 681–700.
  105. Bendlin R, Damg ̊ard I and Orlandi C et al. Semi-homomorphic encryption and multiparty computation. In: Paterson KG (ed.). EUROCRYPT 2011, volume 6632 of LNCS. Heidelberg: Springer, 2011, 169–88
  106. Hazay C, Scholl P and Soria-Vazquez E. Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part I, volume 10624 of LNCS. Heidelberg: Springer, 2017, 598–628.
  107. Katz J, Ranellucci S and Rosulek M et al. Optimizing authenticated garbling for faster secure two-party computation. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 365–91.
  108. Wang X, Ranellucci S and Katz J. Authenticated garbling and efficient maliciously secure two-party computation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 21–37.
  109. Wang X, Ranellucci S and Katz J. Global-scale secure multiparty computation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 39–56.
  110. Yang K, Wang X and Zhang J. More efficient MPC from improved triple generation and authenticated garbling. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1627–46.
  111. Zhu R, Cassel D and Sabry A et al. NANOPI: extreme-scale actively-secure multi-party computation. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 862–79.
  112. Damga ̊rd I, Nielsen JB, Nielsen M and Ranellucci S. The TinyTable protocol for 2-party secure computation, or: Gatescrambling revisited. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 167–87.
  113. Asharov G, Lindell Y and Schneider T et al. More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi A-R, Gligor VD, Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 535–48.
  114. Hazay C, Orsini E and Scholl P et al. TinyKeys: A new approach to efficient multi-party computation. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 3–33.
  115. Schneider T and Zohner M. GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi A-R (ed.). FC 2013, volume 7859 of LNCS. Heidelberg: Springer, 2013, 275–92.
  116. Damga ̊rd I and Nielsen JB. Scalable and unconditionally secure multiparty computation. In: Menezes A (ed.). CRYPTO 2007, volume 4622 of LNCS. Heidelberg: Springer, 2007, 572–90.
  117. Gennaro R, Rabin MO and Rabin T. Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: Coan BA and Afek Y (eds.). 17th ACM PODC. ACM, 1998, 101–111.
  118. Goyal V, Li H and Ostrovsky R et al. ATLAS: Efficient and scalable MPC in the honest majority setting. In: Advances in Cryptology – CRYPTO 2021. Springer, 2021.
  119. Goyal V and Song Y. Malicious security comes free in honest-majority MPC. Cryptology ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.
  120. Genkin D, Ishai Y and Prabhakaran M et al. Circuits resilient to additive attacks with applications to secure computation. In: Shmoys DB (ed.). 46th ACM STOC. ACM Press, 2014, 495–504.
  121. Beaver D. Efficient multiparty protocols using circuit randomization. In: Feigenbaum J (ed.). CRYPTO’91, volume 576 of LNCS. Heidelberg: Springer, 1992, 420–32.
  122. Beerliov ́a-Trub ́ıniov ́ a Z and Hirt M. Perfectly-secure MPC with linear communication complexity. In: Canetti R (ed.). TCC 2008, volume 4948 of LNCS. Heidelberg: Springer, 2008, 213–30
  123. Lindell Y, Oxman E and Pinkas B. The IPS compiler: optimizations, variants and concrete efficiency. In: Rogaway P (ed.). CRYPTO 2011, volume 6841 of LNCS. Heidelberg: Springer, 2011, 259–76.
  124. Boneh D, Boyle E and Corrigan-Gibbs H et al. Zero-knowledge proofs on secret-shared data via fully linear PCPs. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 67–97.
  125. Boyle E, Gilboa N and Ishai Y et al. Efficient fully secure computation via distributed zero-knowledge proofs. In: Advances in Cryptology – ASIACRYPT 2020, volume 12493 of LNCS. Springer International Publishing, 2020, 244–76.
  126. Dalskov A, Escudero D and Keller M. Fantastic four: Honest-majority four-party secure computation with malicious security. Cryptology ePrint Archive, Report 2020/1330, 2020. https://eprint.iacr.org/2020/1330.
  127. Abspoel M, Cramer R and Damg ̊ard I et al. Efficient information-theoretic secure multiparty computation over Z/pkZ via galois rings. In: Hofheinz D and Rosen R (eds.). TCC 2019, Part I, volume 11891 of LNCS. Heidelberg: Springer, 2019, 471–501.
  128. Mouchet C, Troncoso-Pastoriza J and Bossuat J-P et al. Multiparty Homomorphic Encryption from Ring-learningwith-errors. Cryptology ePrint Archive, Report 2020/304, 2020. https://ia.cr/2020/304.
  129. Ben-Efraim A, Nielsen M and Omri E. Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. In: Deng RH, Gauthier-Uma ̃ na V, Ochoa M and Yung M (eds.). ACNS 19, volume 11464 of LNCS. Heidelberg: Springer, 2019, 530–49.
  130. Ishai Y, Kilian J and Nissim K et al. Extending oblivious transfers efficiently. In: Boneh D (ed.). CRYPTO 2003, volume 2729 of LNCS. Heidelberg: Springer, August 2003, 145–61.
  131. Hazay C, Orsini E and Scholl P et al. Concretely efficient large-scale MPC with active security (or, TinyKeys for TinyOT). In: Peyrin T and Galbraith S (eds.). ASIACRYPT 2018, Part III, volume 11274 of LNCS. Heidelberg: Springer, 2018, 86–117.
  132. Boyle E, Couteau G and Gilboa N et al. Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro L, Kinder J, Wang X F and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 291–308.
  133. Rindal P, Raghuraman S and Couteau G. Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Advances in Cryptology – CRYPTO 2021, volume 12827 of LNCS. Springer International Publishing, 2021, 502–34.
  134. Yang K, Weng C, Lan X and et al. Ferret: fast extension for correlated OT with small communication. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1607–26.
  135. Asharov G, Lindell Y and Schneider T et al. More efficient oblivious transfer extensions with security for malicious adversaries. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part I, volume 9056 of LNCS. Heidelberg: Springer, 2015, 673–701.
  136. Keller M, Orsini E and Scholl P. Actively secure OT extension with optimal overhead. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part I, volume 9215 of LNCS. Heidelberg: Springer, 2015, 724–41.
  137. Goyal V, Song Y and Zhu C. Guaranteed output delivery comes free in honest majority MPC. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 618–46.
  138. Chida K, Genkin D and Hamada K et al. Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 34–64.
  139. Furukawa J and Lindell Y. Two-thirds honest-majority MPC for malicious adversaries at almost the cost of semihonest. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1557–71.
  140. Nordholt PS and Veeningen M. Minimising communication in honest-majority MPC by batchwise multiplication verification. In: Preneel B and Vercauteren F (eds.). ACNS 18, volume 10892 of LNCS. Heidelberg: Springer, 2018, 321–39.
  141. Abspoel M, Cramer R and Escudero D et al. Improved single-round secure multiplication using regenerating codes. Cryptology ePrint Archive, Report 2021/253, 2021. https://eprint.iacr.org/2021/253.
  142. Guruswami V and Wootters M. Repairing Reed-Solomon codes. In: Wichs D and Mansour Y (eds.). 48th ACM STOC. ACM Press, 2016, 216–26.
  143. Keller M, Rotaru D and Smart NP et al. Reducing communication channels in MPC. In: Catalano D and De Prisco R (eds.). SCN 18, volume 11035 of LNCS. Heidelberg: Springer, 2018, 181–99.
  144. Smart NP and Wood T. Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui M (ed.). CT-RSA 2019, volume 11405 of LNCS. Heidelberg: Springer, 2019, 210–29.
  145. Ishai Y, Prabhakaran M and Sahai A. Founding cryptography on oblivious transfer – efficiently. In: Wagner D (ed.). CRYPTO 2008, volume 5157 of LNCS. Heidelberg: Springer, 2008, 572–91.
  146. Hazay C, Ishai Y and Marcedone A et al. LevioSA: Lightweight secure arithmetic computation. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 327–44.
  147. Hazay C, Venkitasubramaniam M and Weiss M. The price of active security in cryptographic protocols. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 184–215.
  148. Chen H and Cramer R. Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork C (ed.). CRYPTO 2006, volume 4117 of LNCS. Heidelberg: Springer, 2006, 521–536.
  149. Damga ̊rd I, Keller M and Larraia E et al. Practical covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In: Crampton J, Jajodia S and Mayes K (eds.). ESORICS 2013, volume 8134 of LNCS. Heidelberg: Springer, 2013, 1–18.
  150. Gilboa N. Two party RSA key generation. In: Wiener MJ (ed.). CRYPTO’99, volume 1666 of LNCS. Heidelberg: Springer, 1999, 116–29.
  151. Brakerski Z, Gentry C and Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser S (ed.). ITCS 2012. ACM, 2012, 309–325.
  152. Keller M, Pastro V and Rotaru D. Overdrive: making SPDZ great again. In: Nielsen JB and Rijmen V (eds.). EUROCRYPT 2018, Part III, volume 10822 of LNCS. Heidelberg: Springer, 2018, 158–89.
  153. Baum C, Cozzo D and Smart NP. Using TopGear in overdrive: A more efficient ZKPoK for SPDZ. In: Paterson KG and Stebila D (eds.). SAC 2019, volume 11959 of LNCS. Heidelberg: Springer, 2019, 274–302.
  154. Chen H, Kim M and Razenshteyn I et al. Maliciously secure matrix multiplication with applications to private deep learning. Cryptology ePrint Archive, Report 2020/451, 2020. https://eprint.iacr.org/2020/451.
  155. Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 868–86.
  156. Fan J and Vercauteren F. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144.
  157. Cramer R, Damg ̊ard I and Escudero D et al. SPD Z2k : Efficient MPC mod 2k for dishonest majority. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part II, volume 10992 of LNCS. Heidelberg: Springer, 2018, 769–98.
  158. Damga ̊rd I, Escudero D and Frederiksen TK et al. New primitives for actively-secure MPC over rings with applications to private machine learning. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1102–20.
  159. Catalano D, Di Raimondo M and Fiore D et al. MonZ2k a: Fast maliciously secure two party computation on Z2k . In: Kiayias A, Kohlweiss M, Wallden P and Zikas V (eds.). PKC 2020, Part II, volume 12111 of LNCS. Heidelberg: Springer, 2020, 357–86.
  160. Orsini E, Smart NP and Vercauteren F. Overdrive2k: efficient secure MPC over Z2k from somewhat homomorphic encryption. In: Jarecki S (ed.). CT-RSA 2020, volume 12006 of LNCS. Heidelberg: Springer, 2020, 254–83.
  161. Boyle E, Couteau G and Gilboa N et al. Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 387–416.
  162. Boyle E, Couteau G and Gilboa N et al. Efficient pseudorandom correlation generators: Silent OT extension and more. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 489–518.
  163. Boyle E, Gilboa N and Ishai Y. Function secret sharing. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 337–367.
  164. Frederiksen TK, Keller M and Orsini E et al. A unified approach to MPC with preprocessing using OT. In: Iwata T and Cheon JH (eds.). ASIACRYPT 2015, Part I, volume 9452 of LNCS. Heidelberg: Springer, 2015, 711–35.
  165. Larraia E, Orsini E and Smart N P. Dishonest majority multi-party computation for binary circuits. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 495–512.
  166. Cascudo I, Gundersen J-S. A secret-sharing based MPC protocol for Boolean circuits with good amortized complexity. In: Theory of Cryptography, volume 12551 of LNCS. Springer International Publishing, 2020, 652–82.
  167. Damga ̊rd I, Lauritsen R and Toft T. An empirical study and some improvements of the MiniMac protocol for secure computation. In: Abdalla M and De Prisco R (eds.). SCN 14, volume 8642 of LNCS. Heidelberg: Springer, 2014, 398–415.
  168. Damga ̊rd I and Zakarias S. Constant-overhead secure computation of Boolean circuits using preprocessing. In: Sahai A (ed.). TCC 2013, volume 7785 of LNCS. Heidelberg: Springer, 2013, 621–41.
  169. Frederiksen TK, Pinkas B and Yanai A. Committed MPC – maliciously secure multiparty computation from homomorphic commitments. In: Abdalla M and Dahab R (eds.). PKC 2018, Part I, volume 10769 of LNCS. Heidelberg: Springer, 2018, 587–619.
  170. Cascudo I, Cramer R and Xing C et al. Amortized complexity of information-theoretically secure MPC revisited. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 395–426.
  171. Couteau G. A note on the communication complexity of multiparty computation in the correlated randomness model. In: Ishai Y and Rijmen V (eds.). EUROCRYPT 2019, Part II, volume 11477 of LNCS. Heidelberg: Springer, 2019, 473–503.
  172. Keller M, Orsini E and Rotaru D et al. Faster secure multi-party computation of AES and DES using lookup tables. In: Gollmann D, Miyaji A and Kikuchi H (eds.). ACNS 17, volume 10355 of LNCS. Heidelberg: Springer, 2017, 229–49.
  173. Furukawa J, Lindell Y and Nof A et al. High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron JS and Nielsen JB (eds.). EUROCRYPT 2017, Part II, volume 10211 of LNCS. Heidelberg: Springer, 2017, 225–55.
  174. Araki T, Barak A and Furukawa J et al. Optimized honest-majority MPC for malicious adversaries – Breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2017, 843–62.
  175. Boyle E, Gilboa N and Ishai Y et al. Practical fully secure three-party computation via sublinear distributed zeroknowledge proofs. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 869–86.
  176. Ben-Sasson E, Fehr S and Ostrovsky R. Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 663–80.
  177. Polychroniadou A and Song Y. Constant-overhead unconditionally secure multiparty computation over binary fields. In: Canteaut A and Standaert F-X (eds.). Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 812–41.
  178. Beck G, Goel A and Jain A et al. Order-C secure multiparty computation for highly repetitive circuits. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 663–93.
  179. Gordon SD, Starin D and Yerukhimovich A. The more the merrier: Reducing the cost of large scale MPC. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 694–723.
  180. Franklin MK and Yung M. Communication complexity of secure computation (extended abstract). In: 24th ACM STOC. ACM Press, 1992, 699–710.
  181. Damga ̊rd I, Ishai Y and Krøigaard M. Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert H (ed.). EUROCRYPT 2010, volume 6110 of LNCS. Heidelberg: Springer, 2010, 445–65.
  182. Garay JA, Ishai Y and Ostrovsky R et al. The price of low communication in secure multi-party computation. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 420–46.
  183. Genkin D, Ishai Y and Polychroniadou A. Efficient multi-party computation: From passive to active security via secure SIMD circuits. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 721–741.
  184. Goyal V, Polychroniadou A and Song Y. Unconditional communication-efficient MPC via Hall’s marriage theorem. Cryptology ePrint Archive, Report 2021/834, 2021. https://eprint.iacr.org/2021/834.
  185. Escudero D and Dalskov A. Honest majority MPC with abort with minimal online communication. Cryptology ePrint Archive, Report 2020/1556, 2020. https://eprint.iacr.org/2020/1556.
  186. Ashur T, Cohen E and Hazay C et al. A new framework for garbled circuits. Cryptology ePrint Archive, Report 2021/739, 2021. https://eprint.iacr.org/2021/739.
  187. Bellare M, Hoang VT and Rogaway P. Foundations of garbled circuits. In: Yu T, Danezis G and Gligor VD (eds.). ACM CCS 2012. ACM Press, 2012, 784–96.
  188. Beaver D. Precomputing oblivious transfer. In: Coppersmith D (ed.). CRYPTO’95, volume 963 of LNCS. Heidelberg: Springer, 1995, 97–109.
  189. Huang Y, Evans D and Katz J et al. Faster secure two-party computation using garbled circuits. In: USENIX Security 2011. USENIX Association, 2011.
  190. Lindell Y and Pinkas B. A proof of security of Yao’s protocol for two-party computation. J Cryptol 2009; 22: 161–88.
  191. Malkhi D, Nisan N and Pinkas B et al. Fairplay – secure two-party computation system. In: Blaze M (ed.). USENIX Security 2004. USENIX Association, 2004, 287–302.
  192. Naor M, Pinkas B and Sumner R. Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM Conference on Electronic Commerce – EC’99. New York, NY: ACM, 1999, 129–39.
  193. Pinkas B, Schneider T and Smart NP et al. Secure two-party computation is practical. In: Matsui M (ed.). ASIACRYPT 2009, volume 5912 of LNCS. Heidelberg: Springer, 2009, 250–67.
  194. Kolesnikov V and Schneider T. Improved garbled circuit: Free XOR gates and applications. In: Aceto L, Damg ̊ard I, Goldberg LA, Halld ́orsson MM, Ing ́olfsd ́ottir A and Walukiewicz I (eds.). ICALP 2008, Part II, volume 5126 of LNCS. Heidelberg: Springer, 2008, 486–498.
  195. Zahur S, Rosulek M and Evans D. Two halves make a whole – reducing data transfer in garbled circuits using half gates. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 220–50.
  196. Choi SG, Katz J and Kumaresan R et al. On the security of the “free-XOR” technique. In: Cramer R (ed.). TCC 2012, volume 7194 of LNCS. Heidelberg: Springer, 2012, 39–53.
  197. Bellare M, Hoang VT and Keelveedhi S et al. Efficient garbling from a fixed-key blockcipher. In: IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2013, 478–92.
  198. Guo C, Katz J, Wang X and Yu Y. Efficient and secure multiparty computation from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2020, 825–41.
  199. Rosulek M and Roy L. Three halves make a whole? Beating the half-gates lower bound for garbled circuits. In: Malkin T and Peikert C (eds.). Advances in Cryptology – CRYPTO 2021, volume 12825 of LNCS. Springer International Publishing, 2021, 94–124.
  200. Kolesnikov V, Mohassel P and Rosulek M. FleXOR: Flexible garbling for XOR gates that beats free-XOR. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 440–57.
  201. Gueron S, Lindell Y and Nof A et al. Fast garbling of circuits under standard assumptions. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 567–78.
  202. Applebaum B, Ishai Y and Kushilevitz E. How to garble arithmetic circuits. In: Ostrovsky R (ed.). 52nd FOCS. IEEE Computer Society Press, 2011, 120–9.
  203. Ball M, Carmer B and Malkin T et al. Garbled neural networks are practical. Cryptology ePrint Archive, Report 2019/338, 2019. https://eprint.iacr.org/2019/338.
  204. Ball M, Malkin T and Rosulek M. Garbling gadgets for Boolean and arithmetic circuits. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 565–77.
  205. Ben-Efraim A. On multiparty garbling of arithmetic circuits. In: Peyrin T and Galbraith S (eds.). ASIACRYPT 2018, Part III, volume 11274 of LNCS. Heidelberg: Springer, 2018, 3–33.
  206. Ben-Efraim A, Lindell Y and Omri E. Optimizing semi-honest secure multiparty computation for the Internet. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 578–90.
  207. Aner Ben-Efraim A, Lindell Y and Omri E. Efficient scalable constant-round MPC via garbled circuits. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part II, volume 10625 of LNCS. Heidelberg: Springer, 2017, 471–98.
  208. Ben-Efraim A, Cong K and Omri E et al. Large scale, actively secure computation from LPN and free-XOR garbled circuits. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021.
  209. Lindell Y and Pinkas B. An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor M (ed.). EUROCRYPT 2007, volume 4515 of LNCS. Heidelberg: Springer, 2007, 52–78.
  210. Afshar A, Mohassel P and Pinkas B et al. Non-interactive secure computation based on cut-and-choose. In: Nguyen PQ and Oswald E (eds.). EUROCRYPT 2014, volume 8441 of LNCS. Heidelberg: Springer, 2014, 387–404.
  211. Brand ̃ao LTAN. Secure two-party computation with reusable bit-commitments, via a cut-and-choose with forge-andlose technique – (extended abstract). In: Sako K and Sarkar P (eds.). ASIACRYPT 2013, Part II, volume 8270 of LNCS. Heidelberg: Springer, 2013, 441–63.
  212. Frederiksen TK, Jakobsen TP and Nielsen JB. Faster maliciously secure two-party computation using the GPU. In: Abdalla M and De Prisco R (eds.). SCN 14, volume 8642 of LNCS. Heidelberg: Springer, 2014, 358–79.
  213. Huang Y, Katz J and Evans D. Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti R and Garay JA (eds.). CRYPTO 2013, Part II, volume 8043 of LNCS. Heidelberg: Springer, 2013, 18–35.
  214. Huang Y, Katz Y and Kolesnikov V et al. Amortizing garbled circuits. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 458–75.
  215. Kreuter B and Shen C-H. Billion-gate secure computation with malicious adversaries. In: Kohno T (ed.). USENIX Security 2012. USENIX Association, 2012, 285–300.
  216. Lindell Y. Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti R and Garay J A (eds.). CRYPTO 2013, Part II, volume 8043 of LNCS. Heidelberg: Springer, 2013, 1–17.
  217. Lindell Y and Pinkas B. Secure two-party computation via cut-and-choose oblivious transfer. In: Yuval I (ed.). TCC 2011, volume 6597 of LNCS. Heidelberg: Springer, 2011, 329–46.
  218. Lindell Y and Riva B. Cut-and-choose Yao-based secure computation in the online/offline and batch settings. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 476–494.
  219. Lindell Y and Riva B. Blazing fast 2PC in the offline/online setting with security for malicious adversaries. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 579–590.
  220. Nielsen JB and Orlandi C. Cross and clean: amortized garbled circuits with constant overhead. In: Hirt M and Smith AD (eds.). TCC 2016-B, Part I, volume 9985 of LNCS. Heidelberg: Springer, 2016, 582–603.
  221. Rindal P and Rosulek M. Faster malicious 2-party secure computation with online/offline dual execution. In: Holz T and Savage S (eds.). USENIX Security 2016. USENIX Association, 2016, 297–314.
  222. Shelat A and Shen C-H. Two-output secure computation with malicious adversaries. In: Paterson KG (ed.). EUROCRYPT 2011, volume 6632 of LNCS. Heidelberg: Springer, 2011, 386–405.
  223. Shelat A and Shen C-H. Fast two-party secure computation with minimal assumptions. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 523–34.
  224. Wang X, Malozemoff AJ and Katz J. Faster secure two-party computation in the single-execution setting. In: Coron J-S and Nielsen J-B (eds.). EUROCRYPT 2017, Part III, volume 10212 of LNCS. Heidelberg: Springer, 2017, 399–424.
  225. Nielsen JB and Orlandi C. LEGO for two-party secure computation. In: Reingold O (ed.). TCC 2009, volume 5444 of LNCS. Heidelberg: Springer, 2009, 368–86.
  226. Frederiksen TK, Jakobsen TP and Nielsen JB et al. TinyLEGO: An interactive garbling scheme for maliciously secure two-party computation. Cryptology ePrint Archive, Report 2015/309, 2015. http://eprint.iacr.org/2015/309.
  227. Frederiksen TK, Jakobsen TP and Nielsen JB et al. MiniLEGO: Efficient secure two-party computation from general assumptions. In: Johansson T and Nguyen PQ (eds.). EUROCRYPT 2013, volume 7881 of LNCS. Heidelberg: Springer, 2013, 537–56.
  228. Huang Y and Zhu R. Revisiting LEGOs: Optimizations, analysis, and their limit. Cryptology ePrint Archive, Report 2015/1038, 2015. http://eprint.iacr.org/2015/1038.
  229. Kolesnikov V, Nielsen JB and Rosulek M et al. DUPLO: Unifying cut-and-choose for garbled circuits. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 3–20.
  230. Nielsen J B, Schneider T and Trifiletti R. Constant round maliciously secure 2PC with function-independent preprocessing using LEGO. In: NDSS 2017. The Internet Society, 2017.
  231. Zhu R and Huang Y. JIMU: faster LEGO-based secure computation using additive homomorphic hashes. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part II, volume 10625 of LNCS. Heidelberg: Springer, 2017, 529–72.
  232. Choi SG, Katz J and Malozemoff AJ et al. Efficient three-party computation from cut-and-choose. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 513–30.
  233. Lindell Y, Pinkas B and Smart NP et al. Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 319–338.
  234. Lindell Y, Smart NP and Soria-Vazquez E. More efficient constant-round multi-party computation from BMR and SHE. In: Hirt M and Smith AD (eds.). TCC 2016-B, Part I, volume 9985 of LNCS. Heidelberg: Springer, 2016, 554–81.
  235. Poddar R, Kalra S and Yanai A et al. Senate: a maliciously-secure MPC platform for collaborative analytics. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021, 2129–46.
  236. Byali M, Joseph A and Patra A et al. Fast secure computation for small population over the Internet. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 677–694.
  237. Chandran N, Garay JA and Mohassel P et al. Efficient, constant-round and actively secure MPC: Beyond the three-party case. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 277–294.
  238. Ishai Y, Kumaresan R and Kushilevitz E et al. Secure computation with minimal interaction, revisited. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 359–78.
  239. Mohassel P, Rosulek M and Zhang Y. Fast and secure three-party computation: the garbled circuit approach. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 591–602.
  240. Byali M, Hazay C and Patra A et al. Fast actively secure five-party computation with security beyond abort. In: Cavallaro L, Kinder J, Wang XF, Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1573–1590.
  241. Canetti R, Sarkar P and Wang X. Blazing fast OT for three-round UC OT extension. In: Kiayias A, Kohlweiss M, Wallden P and Zikas V (eds.). PKC 2020, Part II, volume 12111 of LNCS. Heidelberg: Springer, 2020, 299–327.
  242. Masny D and Rindal P. Endemic oblivious transfer. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 309–326.
  243. McQuoid I, Rosulek M and Roy L. Minimal symmetric PAKE and 1-out-of-N OT from programmable-once public functions. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 425–42.
  244. McQuoid I, Rosulek M and Roy L. Batching Base Oblivious Transfers. Cryptology ePrint Archive, Report 2021/682, 2021. https://eprint.iacr.org/2021/682.
  245. Peikert C, Vaikuntanathan V and Waters B. A framework for efficient and composable oblivious transfer. In: Wagner D (ed.). CRYPTO 2008, volume 5157 of LNCS. Heidelberg: Springer, 2008, 554–71.
  246. Chou T and Orlandi C. The simplest protocol for oblivious transfer. In: Progress in Cryptology – LATINCRYPT 2015, volume 9230 of LNCS. Springer International Publishing, 2015, 40–58.
  247. D ̈ottling N, Garg S and Hajiabadi M et al. Two-round oblivious transfer from CDH or LPN. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 768–97.
  248. Naor M and Pinkas B. Efficient oblivious transfer protocols. In: Kosaraju SR (ed.). In: 12th SODA. ACM-SIAM, 2001, 448–57.
  249. Branco P, Ding J and Goul ̃ao M et al. A framework for universally composable oblivious transfer from one-round key-exchange. In: Albrecht M (ed.). IMA International Conference on Cryptography and Coding – IMACC 2019, volume 11929 of LNCS. Springer International Publishing, 2019, 78–101.
  250. David B and Dowsley R. Efficient composable oblivious transfer from CDH in the global random oracle model. Cryptology ePrint Archive, Report 2020/1291, 2020. https://eprint.iacr.org/2020/1291.
  251. Quach W. UC-secure OT from LWE, Revisited. Cryptology ePrint Archive, Report 2020/819, 2020. https://eprint. iacr.org/2020/819.
  252. Lai YF, Galbraith SD and de Saint Guilhem CD. Compact, Efficient and UC-secure Isogeny-based Oblivious Transfer. Cryptology ePrint Archive, Report 2020/1012. 2020. https://eprint.iacr.org/2020/1012.
  253. Beaver D. Correlated pseudorandomness and the complexity of private computations. In: 28th ACM STOC. ACM Press, 1996, 479–488.
  254. Boyle E, Couteau G and Gilboa N et al. Compressing vector OLE. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 896–912.
  255. Blum A, Furst ML and Kearns MJ et al. Cryptographic primitives based on hard learning problems. In: Stinson DR (ed.). CRYPTO’93, volume 773 of LNCS. Heidelberg: Springer, 1994, 278–91.
  256. Boyle E, Couteau G and Gilboa N et al. Correlated pseudorandom functions from variable-density LPN. Cryptology ePrint Archive, Report 2020/1417, 2020. https://eprint.iacr.org/2020/1417.
  257. Goldreich O, Goldwasser S and Micali S. How to construct random functions. J ACM 1986; 33: 792–807.
  258. Boneh D and Waters B. Constrained pseudorandom functions and their applications. In: Sako K and Sarkar P (eds.). ASIACRYPT 2013, Part II, volume 8270 of LNCS. Heidelberg: Springer, 2013, 280–300.
  259. Kiayias A, Papadopoulos S and Triandopoulos N et al. Delegatable pseudorandom functions and applications. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 669–84.
  260. Schoppmann P, Gasc ́on A and Reichert L et al. Distributed vector-OLE: Improved constructions and implementation. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1055–72.
  261. Augot D, Finiasz M and Sendrier N. A fast provably secure cryptographic hash function. Cryptology ePrint Archive, Report 2003/230, 2003. http://eprint.iacr.org/2003/230.
  262. Applebaum B, Damga ̊rd I and Ishai Y et al. Secure arithmetic computation with constant computational overhead. In: Katz J, Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 223–54.
  263. D ̈ottling N, Ghosh S and Nielsen JB et al. TinyOLE: Efficient actively secure two-party computation from oblivious linear function evaluation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 2263–76.
  264. Ishai Y, Prabhakaran M and Sahai A. Secure arithmetic computation with no honest majority. In: Theory of Cryptography, volume 5444 of LNCS. Berlin, Heidelberg: Springer, 2009. 294–314.
  265. De Castro L, Juvekar C and Vaikuntanathan V. Fast vector oblivious linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685, 2020. https://eprint.iacr.org/2020/685.
  266. Baum C, Escudero D and Pedrouzo-Ulloa A et al. Efficient protocols for oblivious linear function evaluation from ring – LWE. In: Galdi C and Kolesnikov V (eds.). SCN 20, volume 12238 of LNCS. Heidelberg: Springer, 2020, 130–49.
  267. Branco P, D ̈ ottling N and Mateus P. Two-round oblivious linear evaluation from learning with errors. Cryptology ePrint Archive, Report 2020/635, 2020. https://eprint.iacr.org/2020/635.
  268. Ghosh S, Nielsen JB and Nilges T. Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, art I, volume 10624 of LNCS. Heidelberg: Springer, 2017, 629–59.
  269. Chase M, Dodis Y and Ishai Y et al. Reusable non-interactive secure computation. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 462–488.
  270. Abspoel M, Escudero D and Volgushev N. Secure training of decision trees with continuous attributes. Proc Priv Enhancing Technol 2020; 2021: 167–87.
  271. Adams S, Choudhary C and De Cock M et al. Privacy-preserving training of tree ensembles over continuous data. Cryptology ePrint Archive, Report 2021/754, 2021. https://eprint.iacr.org/2021/754.
  272. Attrapadung N, Hamada K and Ikarashi D et al. Adam in private: Secure and fast training of deep neural networks with adaptive moment estimation. Cryptology ePrint Archive, Report 2021/736, 2021. https://eprint.iacr.org/2021/ 736.
  273. Braun L, Demmler D and Schneider T et al. MOTION – A framework for mixed-protocol multi-party computation. Cryptology ePrint Archive, Report 2020/1137, 2020. https://eprint.iacr.org/2020/1137.
  274. Knott B, Venkataraman S and Hannun A et al. CrypTen: secure multi-party computation meets machine learning. In: Proceedings of the NeurIPS Workshop on Privacy-Preserving Machine Learning, 2020.
  275. Nikolaenko V, Weinsberg U and Ioannidis S et al. Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2013, 334–48.
  276. Wang Q, Ma Q and Li J et al. Enable Dynamic Parameters Combination to Boost Linear Convolutional Neural Network for Sensitive Data Inference. Cryptology ePrint Archive, Report 2020/961, 2020. https://eprint.iacr.org/ 2020/961.
  277. Liu J, Juuti M and Lu Y et al. Oblivious neural network predictions via MiniONN transformations. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 619–31.
  278. Chandran N, Gupta D and Rastogi A et al. EzPC: Programmable and efficient secure two-party computation for machine learning. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P), 2019, 496–511.
  279. Simonyan K and Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition, 2015. https: //arxiv.org/pdf/1409.1556.pdf
  280. Boemer F, Cammarota R and Demmler D et al. MP2ML: A mixed-protocol machine learning framework for private inference. In: Proceedings of the 15th International Conference on Availability, Reliability and Security – ARES’20. ACM, 2020.
  281. Dowlin N, Gilad-Bachrach R and Laine K et al. CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning - ICML’16, 2016, 201–210. https://JMLR.org.
  282. Huang G, Liu Z and Van Der Maaten L et al. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 2261–69.
  283. Dalskov A, Escudero D and Keller M. Secure evaluation of quantized neural networks. Proc Priv Enh Technol 2020; 2020: 355–75.
  284. Howard AG, Zhu M and Chen B et al. MobileNets: Efficient convolutional neural networks for mobile vision applications, 2017.
  285. Spagnolo F, Perri S and Frustaci F et al. Energy-efficient architecture for CNNs inference on heterogeneous FPGA. J Low Power Electron Appl 2020; 10: 1.
  286. Riazi M S, Weinert C and Tkachenko O et al. Chameleon: a hybrid secure computation framework for machine learning applications. In: Kim J, Ahn G-J, Kim S, Kim Y, L ́opez J and Kim T (eds.). ASIACCS 18. ACM Press, 2018, 707–21.
  287. Krizhevsky A, Sutskever I and Hinton G E. Imagenet classification with deep convolutional neural networks. Commun ACM 2017; 60: 84–90.
  288. Chaudhari H, Choudhury A and Patra A et al. ASTRA: High throughput 3PC over rings with application to secure prediction. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop CCSW’19. ACM, 2019, 81–92.
  289. Wagh S, Gupta D and Chandran N. SecureNN: 3-party secure computation for neural network training. Proc Priv Enh Technol 2019; 2019: 26–49.
  290. Koti N, Pancholi M and Patra A et al. SWIFT: super-fast and robust privacy-preserving machine learning. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021.
  291. He K, Zhang X and Ren S et al. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–78.
  292. Wagh S, Tople S and Benhamouda F et al. FALCON: Honest-majority Maliciously Secure Framework for Private Deep Learning, 2021. https://arxiv.org/abs/2004.02229.
  293. Byali M, Chaudhari H and Patra A et al. Flash: Fast and robust framework for privacy-preserving machine learning. Cryptology ePrint Archive, Report 2019/1365, 2019. https://eprint.iacr.org/2019/1365.
  294. Koti N, Patra A and Rachuri R et al. Tetrad: Actively Secure 4 PC for Secure Training and Inference. Cryptology ePrint Archive, Report 2021/755, 2021. https://eprint.iacr.org/2021/755.
  295. Carpov S, Deforth K and Gama N et al. Manticore: Efficient framework for scalable secure multiparty computation protocols. Cryptology ePrint Archive, Report 2021/200, 2021. https://eprint.iacr.org/2021/200.
  296. Aly A, Orsini E and Rotaru D et al. Zaphod: Efficiently combining LSSS and garbled circuits in SCALE. In: Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC’19. ACM, 2019, 33–44.
  297. Rotaru D, Smart NP and Tanguy T et al. Actively Secure Setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300, 2019. https://eprint.iacr.org/2019/1300.
  298. Rotaru D and Wood T. MArBled circuits: mixing arithmetic and Boolean circuits with active security. In: Hao F, Ruj S and Sen Gupta S (eds.). INDOCRYPT 2019, volume 11898 of LNCS. Heidelberg: Springer, 2019, 227–49.
  299. Escudero D, Ghosh S and Keller M et al. Improved primitives for MPC over mixed arithmetic-binary circuits. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 823–852.
  300. Boyle E, Chandran N and Gilboa N et al. Function secret sharing for mixed-mode and fixed-point secure computation. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 871–900.
  301. Boyle E, Gilboa N and Ishai Y. Secure computation with preprocessing via function secret sharing. In: Hofheinz D and Rosen A (eds.). TCC 2019, Part I, volume 11891 of LNCS. Heidelberg: Springer, 2019, 341–371.
  302. ISO/IEC JTC 1/SC 27. ISO/IEC WD 4922-2.3 Information security – Secure multiparty computation – Part 2: Mechanisms based on secret sharing, 2021. https://www.iso.org/standard/80514.html.
  303. National Institute of Standards and Technology (NIST). Multi-party Threshold Cryptography, 2021. https://csrc. nist.gov/Projects/Threshold-Cryptography.
  304. National Institute of Standards and Technology (NIST). Privacy-enhancing Cryptography, 2021. https://csrc.nist. gov/Projects/pec.