Concretely efficient secure multi-party computation protocols - survey and more
具体有效的安全多方计算协议:调查和更多
安全的多方计算(MPC)允许一组当事人在他们的隐私输入上联合计算一个函数,并且除了函数的输出外什么都不透露。在过去的十年中,MPC 已经从一个纯粹的理论研究迅速转变成一个具有实际意义的对象,人们对实际应用的兴趣越来越大,如保护隐私的机器学习(PPML)。在本文中,我们全面调查了在不诚实多数和诚实多数情况下,具有半诚实和恶意安全的具体有效的 MPC 协议的现有工作。我们重点考虑有中止的安全概念,也就是说,腐败的一方可以阻止诚实的一方在收到输出后收到输出。我们提出了设计不同风格的 MPC 协议的基本和关键方法的高层次想法,以及 MPC 的关键构建模块。对于 MPC 的应用,我们比较了已知的建立在 MPC 上的 PPML 协议,并描述了最先进的 PPML 协议的私有推理和训练的效率。此外,我们总结了几个挑战和开放性问题,以突破 MPC 协议的效率,以及一些有趣的未来工作,值得被解决。这项调查的目的是向那些对了解、改进和应用具体的高效 MPC 协议感兴趣的研究人员提供 MPC 的最新发展和关键方法。
1 介绍
2 预备工作
3 基于秘密共享的 MPC 协议
4 基于混淆电路的恒圆 MPC
5 不经意传输和不经意线性函数评估
在本节中,我们描述了不经意传输(OT)及其重要变体(即随机 OT 和相关 OT)的最新发展和技术。此外,我们还介绍了 OT 的算术泛化,即不经意线性函数评估(OLE)及其重要变体(即 VOLE)。OT 主要用于布尔电路的 MPC 协议,而 OLE 主要应用于算术电路的 MPC 协议。在这项调查中,我们主要回顾了构建(相关)OT 的最先进技术,并对设计(矢量)OLE 的技术进行了简明的概述。请注意,OLE 与 OT 具有相同的重要性。此外,对于基于带噪学习奇偶性(LPN)的最先进技术来说,矢量 OLE 可以在与相关 OT 相同的框架内设计。我们注意到,同态加密(HE)是产生(矢量)OLE 相关性的关键技术,尽管在本节中没有详细描述它。与基于 HE 的线性通信复杂性相比,最近基于 LPN 变体的技术允许获得亚线性通信复杂性。
5.1 不经意传输
不经意传输(OT)[95,96] 是发送方
……
因此,我们可以专注于设计具体有效的 COT 协议,然后将其转化为标准的 OT 协议。此外,COT 协议能够被用来使用类似 TinyOT 的协议 [104, 106-110] 产生 BDOZ 式的认证共享,以及使用比特分解思想产生 SPDZ 式的认证共享 [43, 150]。对于具有自由 XOR 的 GCs,电路中每条线的乱码标签都满足 COT 的相关性,因此可以使用 COT 协议从乱码者向评估者无意识地传输,也就是说,COT 也可以直接用于 MPC 协议。
半诚实的 IKNP 协议 [130](在 [113] 中改进)的工作原理大致如下。1)通过切换发送方和接收方的角色,在设置阶段执行一个 baseOT 协议(依赖于公钥操作)以产生
……
5.2 不经意线性函数评估
OLE:不经意线性函数评估(OLE)是 OT 的算术泛化,对于设计大领域算术电路的 MPC 协议特别有用 [120,146,262-264]。特别是,OLE 直接给出了两个秘密值的乘法的两方加法共享。因此,通过成对的 OLE 协议执行,我们可以使用 OLE 来生成 Beaver 乘法三元组,而无需在多方设置中进行认证。OLE 可以使用 OT 扩展和 Gilboa 乘法的方法来构建 [43, 150],并且具有便宜的计算成本,但通信成本高得多。存在一种标准的方法来设计 OLE,即使用基于 RLWE 的加法同态加密(AHE),该方法已被用于 Overdrive [152] 和最近的工作 [265],其中接收方
最近,Boyle 等人 [162] 提出了一个直接基于 LPN 的 OLE 构造,它比上述 OLE 协议具有非常低的通信成本,但在生成
VOLE:向量不经意线性函数评估(VOLE)是 COT 在大域的算术泛化,定义如下:
- 发送方持有一个统一的全局密钥
。 - 对于每个 VOLE 的执行,发送方得到一个向量
,接收方得到两个向量 ,这样 。
我们有一个使用 CRHFs 从 COT 到 OT 的标准转换 [130]。这对 VOLE 和 OLE 来说不是这样的,因为底层字段
最先进的 VOLE 协议 [69, 133] 与最著名的基于双 LPN 或原始 LPN 的 COT 协议 [133, 134] 采用相同的框架,只是在单点 VOLE 协议执行中需要生成一个额外的 VOLE 相关,因为单个非零元素在大场 F 中是均匀的而不是等于 1。此外,对于 VOLE,我们需要在大场 F 而不是 F2 上使用 LPN 假设。 我们能够使用基于 AHE 的 VOLE 协议 [152, 265] 在设置阶段产生 VOLE 相关。此外,我们可以使用 PCF 方法在 VDLPN 假设下生成 VOLE 相关 [256],如果生成的 VOLE 相关的数量非常大,可能比 PCG 方法有效率优势。与 COT 的情况类似,我们可以使用最先进的一致性检查 [69, 134] 来构建恶意安全的 VOLE 协议。
6 MPC 在机器学习中的应用
7 结论和未来工作
参考文献
- Beaver D, Micali S and Rogaway P. The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC. ACM Press, 1990, 503–13.
- Ben-Or M, Goldwasser S and Wigderson A. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC. ACM Press, 1988, 1–10.
- Chaum D, Cre ́peau C and Damga ̊rd I. Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC. ACM Press, 1988, 11–19.
- Goldreich O, Micali S and Wigderson A. How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho A (ed.). 19th ACM STOC. ACM Press, 1987, 218–29.
- Rabin T and Ben-Or M. Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st ACM STOC. ACM Press, 1989, 73–85.
- Yao AC-C. How to generate and exchange secrets (extended abstract). In: 27th FOCS. IEEE Computer Society Press, 1986, 162–7.
- Demmler D, Schneider T and Zohner M. ABY – A framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015. The Internet Society, 2015.
- Wang X, Malozemoff AJ and Katz J. EMP-toolkit: Efficient MultiParty Computation Toolkit. https://github.com/ emp-toolkit, 2016.
- Alexandra Institute. FRESCO – A FRamework for Efficient Secure COmputation. https://github.com/aicis/fresco.
- Multiparty.org Development Team. Javascript Implementation of Federated Functionalities, 2020. https://github. com/multiparty/jiff .
- Data61. Mp-spdz. https://github.com/data61/MP-SPDZ, 2019.
- Schoenmakers B. MPyC: Secure Multiparty Computation in Python https://github.com/lschoe/mpyc.
- Aly A, Keller M and Orsini E et al. SCALE-MAMBA v1.14: Documentation, 2021. https://github.com/ KULeuven-COSIC/SCALE-MAMBA.
- Bogdanov D, Laur S and Willemson J. Sharemind: A framework for fast privacy-preserving computations. In: Jajodia S and L ́opez J (eds.). ESORICS 2008, volume 5283 of LNCS. Heidelberg: Springer, 2008, 192–206.
- Songhori EM, Hussain SU and Sadeghi A-R et al. TinyGarble: highly compressed and scalable sequential garbled circuits. In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2015, 411–28.
- Hastings M, Hemenway B and Noble D et al. SoK: General purpose compilers for secure multi-party computation. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1220–37.
- Keller M. MP-SPDZ: A versatile framework for multi-party computation. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1575–90.
- Agrawal N, Shahin Shamsabadi A and Kusner MJ et al. QUOTIENT: Two-party secure neural network training and prediction. In: Cavallaro L, Kinder J, Wang X, Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1231–47.
- Chaudhari H, Rachuri R and Suresh A. Trident: Efficient 4PC framework for privacy preserving machine learning. In: NDSS 2020. The Internet Society, 2020.
- Juvekar C, Vaikuntanathan V and Chandrakasan A. GAZELLE: A low latency framework for secure neural network inference. In: Enck W and Felt AP (eds.). USENIX Security 2018. USENIX Association, 2018, 1651–69.
- Kumar N, Rathee M and Chandran N et al. CrypTFlow: secure TensorFlow inference. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2020, 336–53.
- Mishra P, Lehmkuhl R and Srinivasan A et al. Delphi: A cryptographic inference service for neural networks. In: Capkun S and Roesner F (eds.). USENIX Security 2020. USENIX Association, 2020, 2505–22.
- Mohassel P and Rindal P. ABY3: A mixed protocol framework for machine learning. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 35–52.
- Mohassel P and Zhang Y. SecureML: A system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2017, 19–38.
- Patra A, Schneider T and Suresh A et al. ABY2.0: Improved Mixed-protocol Secure Two-party Computation. Cryptology ePrint Archive, Report 2020/1225, 2020. https://eprint.iacr.org/2020/1225.
- Patra A and Suresh A. BLAZE: Blazing fast privacy-preserving machine learning. In: NDSS 2020. The Internet Society, 2020.
- Rathee D, Rathee M and Goli RKK et al. SIRNN: A Math Library for Secure RNN Inference. Cryptology ePrint Archive, Report 2021/459, 2021. https://eprint.iacr.org/2021/459.
- Rathee D, Rathee M and Kumar N et al. CrypTFlow2: practical 2-party secure inference. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 325–42.
- Riazi M S, Samragh M and Chen H et al. XONN: XNOR-based oblivious deep neural network inference. In: Heninger N and Traynor P (eds.). USENIX Security 2019. USENIX Association, 2019, 1501–18.
- Schoppmann P, Gasc ́ on A and Raykova M et al. Make some ROOM for the zeros: data sparsity in secure distributed machine learning. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1335–50.
- Tan S, Knott B and Tian Y et al. CryptGPU: fast privacy-preserving machine learning on the GPU. In: IEEE Symposium on Security and Privacy, 2021.
- Brunetta C, Tsaloli G and Liang B et al. Non-interactive, secure verifiable aggregation for decentralized, privacypreserving learning. Cryptology ePrint Archive, Report 2021/654, 2021. https://eprint.iacr.org/2021/654.
- Fereidooni H, Marchal S and Miettinen M et al. SAFELearn: Secure Aggregation for private FEderated Learning. Cryptology ePrint Archive, Report 2021/386, 2021. https://eprint.iacr.org/2021/386.
- Han K, Jeong J and Sohn JH et al. Efficient privacy preserving logistic regression inference and training. Cryptology ePrint Archive, Report 2020/1396, 2020. https://eprint.iacr.org/2020/1396.
- Zheng W, Deng R and Chen W et al. Cerebro: A Platform for Multi-party Cryptographic Collaborative Learning. Cryptology ePrint Archive, Report 2021/759, 2021. https://eprint.iacr.org/2021/759.
- Zheng Q, Popa RA and Gonzalez JE et al. Helen: maliciously secure coopetitive learning for linear models. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 724–38.
- Bogdanov D, Niitsoo M and Toft T et al. High-performance secure multi-party computation for data mining applications. Int J Inf Secur 2012; 11: 403–18.
- Burkhart M, Strasser M and Many D et al. SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security 2010. USENIX Association, 2010, 223–40.
- Cramer R, Damg ̊ard IB and Nielsen JB. Secure Multiparty Computation and Secret Sharing. Cambridge University Press, 2015.
- Lindell Y and Pinkas B. Privacy preserving data mining. J Cryptol 2002; 15: 177–206.
- Ben-David A, Nisan N and Pinkas B. FairplayMP: A system for secure multi-party computation. In: Ning P, Syverson PF and Jha S (eds.). ACM CCS 2008. ACM Press, 2008, 257–66.
- Bogetoft P, Christensen DL and Damg ̊ard I et al. Secure multiparty computation goes live. In: Dingledine R and Golle P (eds.). FC 2009, volume 5628 of LNCS. Heidelberg: Springer, 2009, 325–43
- Keller M, Orsini E and Scholl P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 830–42.
- Cho H, Wu DJ and Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol 2018; 36: 547–51.
- Jagadeesh KA, Wu DJ and Birgmeier JA et al. Deriving genomic diagnoses without revealing patient genomes. Science 2017; 357: 692–5.
- Jha S, Kruger L and Shmatikov V. Towards practical privacy for genomic computation. In: 2008 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2008, 216–30.
- Archer DW, Bogdanov D and Lindell Y et al. From keys to databases – real-world applications of secure multi-party computation. Comput J 2018; 61: 1749–71.
- Almashaqbeh G and Solomon R. Sok: Privacy-preserving computing in the blockchain era. Cryptology ePrint Archive, Report 2021/727, 2021. https://eprint.iacr.org/2021/727.
- Atapoor S, Smart NP and Alaoui YT. Private liquidity matching using MPC. Cryptology ePrint Archive, Report 2021/475, 2021. https://eprint.iacr.org/2021/475.
- Banerjee A, Clear M and Tewari H. zkhawk: Practical private smart contracts from MPC-based hawk. Cryptology ePrint Archive, Report 2021/501, 2021. https://eprint.iacr.org/2021/501.
- Dolev S and Wang Z. Sodsmpc: FSM based anonymous and private quantum-safe smart contracts. Cryptology ePrint Archive, Report 2020/1346, 2020. https://eprint.iacr.org/2020/1346.
- El Defrawy K and Lampkins J. Founding digital currency on secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS’14. Association for Computing Machinery, 2014, 1–14.
- Green M and Miers I. Bolt: Anonymous payment channels for decentralized currencies. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 473–89.
- Ames S, Hazay C and Ishai Y et al. Ligero: Lightweight sublinear arguments without a trusted setup. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 2087–2104.
- Bhadauria R, Fang Z and Hazay C et al. Ligero++: A new optimized sublinear IOP. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 2025–38.
- Chase M, Derler D and Goldfeder S et al. Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 1825–1842
- De Saint Guilhem CD, Orsini E and Tanguy T. Limbo: Efficient zero-knowledge mpcith-based arguments. Cryptology ePrint Archive, Report 2021/215, 2021. https://ia.cr/2021/215.
- Giacomelli I, Madsen J and Orlandi C. ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz T and Savage S (eds.). USENIX Security 2016. USENIX Association, 2016, 1069–83.
- Gvili Y, Scheffler S and Varia M. Booligero: Improved sublinear zero knowledge proofs for Boolean circuits. Cryptology ePrint Archive, Report 2021/121, 2021. https://eprint.iacr.org/2021/121.
- Ishai Y, Kushilevitz E and Ostrovsky R et al. Zero-knowledge from secure multiparty computation. In: Johnson DS and Feige U (eds.). 39th ACM STOC. ACM Press, 2007, 21–30.
- Katz J, Kolesnikov V and Wang X. Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 525–37.
- Baum C, Braun L and Munch-Hansen A et al. Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k . Cryptology ePrint Archive, Report 2021/750, 2021. https://eprint.iacr.org/2021/750.
- Baum C, Malozemoff AJ and Rosen M et al. Mac’n’cheese: Zero-knowledge proofs for arithmetic circuits with nested disjunctions. Cryptology ePrint Archive, Report 2020/1410, 2020. https://eprint.iacr.org/2020/1410.
- Dittmer S, Ishai Y and Ostrovsky R. Line-point zero knowledge and its applications. Cryptology ePrint Archive, Report 2020/1446, 2020. https://eprint.iacr.org/2020/1446.
- Frederiksen TK, Nielsen JB and Orlandi C. Privacy-free garbled circuits with applications to efficient zero-knowledge. In: Oswald E and Fischlin M (eds.) EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 191–219.
- Heath D and Kolesnikov V. Stacked garbling for disjunctive zero-knowledge proofs. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part III, volume 12107 of LNCS. Heidelberg: Springer, 2020, 569–98.
- Jawurek M, Kerschbaum F and Orlandi C. Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 955–66.
- Kondi Y and Patra A. Privacy-free garbled circuits for formulas: size zero and information-theoretic. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 188–222.
- Weng C, Yang K, Katz J and Wang X. Wolverine: Fast, Scalable, and Communication-efficient Zero-knowledge Proofs for Boolean and Arithmetic Circuits. IEEE Computer Society Press, 2021.
- Weng C, Yang K and Xie X et al. Mystique: Efficient Conversions for Zero-knowledge Proofs with Applications to Machine Learning. Cryptology ePrint Archive, Report 2021/730, 2021. https://eprint.iacr.org/2021/730.
- Yang K, Sarkar P and Weng C et al. Quicksilver: Efficient and Affordable Zero-knowledge Proofs for Circuits and Polynomials Over Any Field. Cryptology ePrint Archive, Report 2021/076, 2021. https://eprint.iacr.org/2021/076.
- Canetti R, Gennaro R and Goldfeder S et al. UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1769–87.
- Chen M, Cohen R and Doerner J et al. Multiparty generation of an RSA modulus. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part III, volume 12172 of LNCS. Heidelberg: Springer, 2020, 64–93.
- Chen M, Hazay C and Ishai Y et al. Diogenes: Lightweight scalable RSA modulus generation with a dishonest majority. Cryptology ePrint Archive, Report 2020/374, 2020. https://eprint.iacr.org/2020/374.
- Doerner J, Kondi Y and Lee E et al. Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2018, 980–997.
- Doerner J, Kondi Y and Lee E et al. Threshold ECDSA from ECDSA assumptions: The multiparty case. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1051–66.
- Frederiksen TK, Lindell Y and Osheter V et al. Fast distributed RSA key generation for semi-honest and malicious adversaries. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part II, volume 10992 of LNCS. Heidelberg: Springer, 2018, 331–61.
- Hazay C, Mikkelsen G and Rabin T et al. Efficient RSA key generation and threshold paillier in the two-party setting. J Cryptol 2019; 32: 265–323.
- Lindell Y and Nof A. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 1837–54.
- Garimella G, Pinkas B and Rosulek M et al. Oblivious key-value stores and amplification for private set intersection. In: Malkin T and Peikert C (eds.). Advances in Cryptology – CRYPTO 2021, volume 12826 of LNCS. Springer International Publishing, 2021, 395–425.
- Pinkas B, Rosulek M and Trieu N et al. SpOT-light: lightweight private set intersection from sparse OT extension. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 401–31.
- Pinkas B, Rosulek M and Trieu N et al. PSI from PaXoS: fast, malicious private set intersection. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 739–67.
- Pinkas B, Schneider T and Tkachenko O et al. Efficient circuit-based PSI with linear communication. In: Ishai Y and Rijmen V (eds.). EUROCRYPT 2019, Part III, volume 11478 of LNCS. Heidelberg: Springer, 2019, 122–53.
- Pinkas B, Schneider T and Weinert C et al. Efficient circuit-based PSI via cuckoo hashing. In: Nielsen JB and Rijmen V (eds.). EUROCRYPT 2018, Part III, volume 10822 of LNCS. Heidelberg: Springer, 2018, 125–57.
- Rindal P and Schoppmann P. VOLE-PSI: fast OPRF and Circuit-PSI from Vector-OLE. In: Canteaut A and Standaert F-X (eds.). Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 901–30.
- Cleve R. Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th ACM STOC. ACM Press, 1986, 364–69.
- Araki T, Furukawa J and Lindell Y et al. High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC, Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 805–17.
- Lindell Y. Secure multiparty computation. Commun ACM 2020; 64: 86–96.
- Orsini E. Efficient, actively secure MPC with a dishonest majority: a survey. In: Bajard JC and Topuzo ̆ glu A (eds.). International Workshop on the Arithmetic of Finite Fields – WAIFI 2020, volume 12542 of LNCS. Springer International Publishing, 2021, 42–71.
- Canetti R. Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS. IEEE Computer Society Press, 2001, 136–145.
- Goldreich O. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge University Press, 2004.
- Canetti C. Security and composition of multiparty cryptographic protocols. J Cryptol 2000; 13: 143–202.
- Kushilevitz E, Lindell Y and Rabin T. Information-theoretically secure protocols and security under composition. In: Kleinberg JM (ed.). 38th ACM STOC. ACM Press, May 2006, 109–18.
- Goldwasser S and Lindell Y. Secure multi-party computation without agreement. J Cryptol 2005; 18: 247–87.
- Even S, Goldreich O and Lempel A. A randomized protocol for signing contracts. Commun ACM 1985; 28: 637–47.
- Rabin MO. How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81, Aiken Computation Laboratory, Harvard University, 1981.
- Naor M and Pinkas B. Oblivious transfer and polynomial evaluation. In: 31st ACM STOC. ACM Press, 1999, 245–54.
- Shamir A. How to share a secret. Commun ACM 1979; 22: 612–3.
- Cramer R, Damg ̊ard I and Ishai Y. Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian J (ed.). TCC 2005, volume 3378 of LNCS. Heidelberg: Springer, 2005, 342–62.
- Ito M, Saito A and Nishizeki T. Secret sharing scheme realizing general access structure. Electron Commun Jpn III 1989; 72: 56–64.
- Lindell Y and Nof A. A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 259–76.
- Dessouky G, Koushanfar F and Sadeghi A-R et al. Pushing the communication barrier in secure computation using lookup tables. In: NDSS 2017. The Internet Society, 2017.
- Damga ̊rd I, Pastro V, Smart NP and Zakarias S. Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 643–62.
- Nielsen JB, Nordholt PS and Orlandi C et al. A new approach to practical active-secure two-party computation. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 681–700.
- Bendlin R, Damg ̊ard I and Orlandi C et al. Semi-homomorphic encryption and multiparty computation. In: Paterson KG (ed.). EUROCRYPT 2011, volume 6632 of LNCS. Heidelberg: Springer, 2011, 169–88
- Hazay C, Scholl P and Soria-Vazquez E. Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part I, volume 10624 of LNCS. Heidelberg: Springer, 2017, 598–628.
- Katz J, Ranellucci S and Rosulek M et al. Optimizing authenticated garbling for faster secure two-party computation. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 365–91.
- Wang X, Ranellucci S and Katz J. Authenticated garbling and efficient maliciously secure two-party computation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 21–37.
- Wang X, Ranellucci S and Katz J. Global-scale secure multiparty computation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 39–56.
- Yang K, Wang X and Zhang J. More efficient MPC from improved triple generation and authenticated garbling. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1627–46.
- Zhu R, Cassel D and Sabry A et al. NANOPI: extreme-scale actively-secure multi-party computation. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 862–79.
- Damga ̊rd I, Nielsen JB, Nielsen M and Ranellucci S. The TinyTable protocol for 2-party secure computation, or: Gatescrambling revisited. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 167–87.
- Asharov G, Lindell Y and Schneider T et al. More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi A-R, Gligor VD, Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 535–48.
- Hazay C, Orsini E and Scholl P et al. TinyKeys: A new approach to efficient multi-party computation. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 3–33.
- Schneider T and Zohner M. GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi A-R (ed.). FC 2013, volume 7859 of LNCS. Heidelberg: Springer, 2013, 275–92.
- Damga ̊rd I and Nielsen JB. Scalable and unconditionally secure multiparty computation. In: Menezes A (ed.). CRYPTO 2007, volume 4622 of LNCS. Heidelberg: Springer, 2007, 572–90.
- Gennaro R, Rabin MO and Rabin T. Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: Coan BA and Afek Y (eds.). 17th ACM PODC. ACM, 1998, 101–111.
- Goyal V, Li H and Ostrovsky R et al. ATLAS: Efficient and scalable MPC in the honest majority setting. In: Advances in Cryptology – CRYPTO 2021. Springer, 2021.
- Goyal V and Song Y. Malicious security comes free in honest-majority MPC. Cryptology ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.
- Genkin D, Ishai Y and Prabhakaran M et al. Circuits resilient to additive attacks with applications to secure computation. In: Shmoys DB (ed.). 46th ACM STOC. ACM Press, 2014, 495–504.
- Beaver D. Efficient multiparty protocols using circuit randomization. In: Feigenbaum J (ed.). CRYPTO’91, volume 576 of LNCS. Heidelberg: Springer, 1992, 420–32.
- Beerliov ́a-Trub ́ıniov ́ a Z and Hirt M. Perfectly-secure MPC with linear communication complexity. In: Canetti R (ed.). TCC 2008, volume 4948 of LNCS. Heidelberg: Springer, 2008, 213–30
- Lindell Y, Oxman E and Pinkas B. The IPS compiler: optimizations, variants and concrete efficiency. In: Rogaway P (ed.). CRYPTO 2011, volume 6841 of LNCS. Heidelberg: Springer, 2011, 259–76.
- Boneh D, Boyle E and Corrigan-Gibbs H et al. Zero-knowledge proofs on secret-shared data via fully linear PCPs. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 67–97.
- Boyle E, Gilboa N and Ishai Y et al. Efficient fully secure computation via distributed zero-knowledge proofs. In: Advances in Cryptology – ASIACRYPT 2020, volume 12493 of LNCS. Springer International Publishing, 2020, 244–76.
- Dalskov A, Escudero D and Keller M. Fantastic four: Honest-majority four-party secure computation with malicious security. Cryptology ePrint Archive, Report 2020/1330, 2020. https://eprint.iacr.org/2020/1330.
- Abspoel M, Cramer R and Damg ̊ard I et al. Efficient information-theoretic secure multiparty computation over Z/pkZ via galois rings. In: Hofheinz D and Rosen R (eds.). TCC 2019, Part I, volume 11891 of LNCS. Heidelberg: Springer, 2019, 471–501.
- Mouchet C, Troncoso-Pastoriza J and Bossuat J-P et al. Multiparty Homomorphic Encryption from Ring-learningwith-errors. Cryptology ePrint Archive, Report 2020/304, 2020. https://ia.cr/2020/304.
- Ben-Efraim A, Nielsen M and Omri E. Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. In: Deng RH, Gauthier-Uma ̃ na V, Ochoa M and Yung M (eds.). ACNS 19, volume 11464 of LNCS. Heidelberg: Springer, 2019, 530–49.
- Ishai Y, Kilian J and Nissim K et al. Extending oblivious transfers efficiently. In: Boneh D (ed.). CRYPTO 2003, volume 2729 of LNCS. Heidelberg: Springer, August 2003, 145–61.
- Hazay C, Orsini E and Scholl P et al. Concretely efficient large-scale MPC with active security (or, TinyKeys for TinyOT). In: Peyrin T and Galbraith S (eds.). ASIACRYPT 2018, Part III, volume 11274 of LNCS. Heidelberg: Springer, 2018, 86–117.
- Boyle E, Couteau G and Gilboa N et al. Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro L, Kinder J, Wang X F and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 291–308.
- Rindal P, Raghuraman S and Couteau G. Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Advances in Cryptology – CRYPTO 2021, volume 12827 of LNCS. Springer International Publishing, 2021, 502–34.
- Yang K, Weng C, Lan X and et al. Ferret: fast extension for correlated OT with small communication. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1607–26.
- Asharov G, Lindell Y and Schneider T et al. More efficient oblivious transfer extensions with security for malicious adversaries. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part I, volume 9056 of LNCS. Heidelberg: Springer, 2015, 673–701.
- Keller M, Orsini E and Scholl P. Actively secure OT extension with optimal overhead. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part I, volume 9215 of LNCS. Heidelberg: Springer, 2015, 724–41.
- Goyal V, Song Y and Zhu C. Guaranteed output delivery comes free in honest majority MPC. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 618–46.
- Chida K, Genkin D and Hamada K et al. Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 34–64.
- Furukawa J and Lindell Y. Two-thirds honest-majority MPC for malicious adversaries at almost the cost of semihonest. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1557–71.
- Nordholt PS and Veeningen M. Minimising communication in honest-majority MPC by batchwise multiplication verification. In: Preneel B and Vercauteren F (eds.). ACNS 18, volume 10892 of LNCS. Heidelberg: Springer, 2018, 321–39.
- Abspoel M, Cramer R and Escudero D et al. Improved single-round secure multiplication using regenerating codes. Cryptology ePrint Archive, Report 2021/253, 2021. https://eprint.iacr.org/2021/253.
- Guruswami V and Wootters M. Repairing Reed-Solomon codes. In: Wichs D and Mansour Y (eds.). 48th ACM STOC. ACM Press, 2016, 216–26.
- Keller M, Rotaru D and Smart NP et al. Reducing communication channels in MPC. In: Catalano D and De Prisco R (eds.). SCN 18, volume 11035 of LNCS. Heidelberg: Springer, 2018, 181–99.
- Smart NP and Wood T. Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui M (ed.). CT-RSA 2019, volume 11405 of LNCS. Heidelberg: Springer, 2019, 210–29.
- Ishai Y, Prabhakaran M and Sahai A. Founding cryptography on oblivious transfer – efficiently. In: Wagner D (ed.). CRYPTO 2008, volume 5157 of LNCS. Heidelberg: Springer, 2008, 572–91.
- Hazay C, Ishai Y and Marcedone A et al. LevioSA: Lightweight secure arithmetic computation. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 327–44.
- Hazay C, Venkitasubramaniam M and Weiss M. The price of active security in cryptographic protocols. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 184–215.
- Chen H and Cramer R. Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork C (ed.). CRYPTO 2006, volume 4117 of LNCS. Heidelberg: Springer, 2006, 521–536.
- Damga ̊rd I, Keller M and Larraia E et al. Practical covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In: Crampton J, Jajodia S and Mayes K (eds.). ESORICS 2013, volume 8134 of LNCS. Heidelberg: Springer, 2013, 1–18.
- Gilboa N. Two party RSA key generation. In: Wiener MJ (ed.). CRYPTO’99, volume 1666 of LNCS. Heidelberg: Springer, 1999, 116–29.
- Brakerski Z, Gentry C and Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser S (ed.). ITCS 2012. ACM, 2012, 309–325.
- Keller M, Pastro V and Rotaru D. Overdrive: making SPDZ great again. In: Nielsen JB and Rijmen V (eds.). EUROCRYPT 2018, Part III, volume 10822 of LNCS. Heidelberg: Springer, 2018, 158–89.
- Baum C, Cozzo D and Smart NP. Using TopGear in overdrive: A more efficient ZKPoK for SPDZ. In: Paterson KG and Stebila D (eds.). SAC 2019, volume 11959 of LNCS. Heidelberg: Springer, 2019, 274–302.
- Chen H, Kim M and Razenshteyn I et al. Maliciously secure matrix multiplication with applications to private deep learning. Cryptology ePrint Archive, Report 2020/451, 2020. https://eprint.iacr.org/2020/451.
- Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 868–86.
- Fan J and Vercauteren F. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144.
- Cramer R, Damg ̊ard I and Escudero D et al. SPD Z2k : Efficient MPC mod 2k for dishonest majority. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part II, volume 10992 of LNCS. Heidelberg: Springer, 2018, 769–98.
- Damga ̊rd I, Escudero D and Frederiksen TK et al. New primitives for actively-secure MPC over rings with applications to private machine learning. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1102–20.
- Catalano D, Di Raimondo M and Fiore D et al. MonZ2k a: Fast maliciously secure two party computation on Z2k . In: Kiayias A, Kohlweiss M, Wallden P and Zikas V (eds.). PKC 2020, Part II, volume 12111 of LNCS. Heidelberg: Springer, 2020, 357–86.
- Orsini E, Smart NP and Vercauteren F. Overdrive2k: efficient secure MPC over Z2k from somewhat homomorphic encryption. In: Jarecki S (ed.). CT-RSA 2020, volume 12006 of LNCS. Heidelberg: Springer, 2020, 254–83.
- Boyle E, Couteau G and Gilboa N et al. Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 387–416.
- Boyle E, Couteau G and Gilboa N et al. Efficient pseudorandom correlation generators: Silent OT extension and more. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 489–518.
- Boyle E, Gilboa N and Ishai Y. Function secret sharing. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 337–367.
- Frederiksen TK, Keller M and Orsini E et al. A unified approach to MPC with preprocessing using OT. In: Iwata T and Cheon JH (eds.). ASIACRYPT 2015, Part I, volume 9452 of LNCS. Heidelberg: Springer, 2015, 711–35.
- Larraia E, Orsini E and Smart N P. Dishonest majority multi-party computation for binary circuits. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 495–512.
- Cascudo I, Gundersen J-S. A secret-sharing based MPC protocol for Boolean circuits with good amortized complexity. In: Theory of Cryptography, volume 12551 of LNCS. Springer International Publishing, 2020, 652–82.
- Damga ̊rd I, Lauritsen R and Toft T. An empirical study and some improvements of the MiniMac protocol for secure computation. In: Abdalla M and De Prisco R (eds.). SCN 14, volume 8642 of LNCS. Heidelberg: Springer, 2014, 398–415.
- Damga ̊rd I and Zakarias S. Constant-overhead secure computation of Boolean circuits using preprocessing. In: Sahai A (ed.). TCC 2013, volume 7785 of LNCS. Heidelberg: Springer, 2013, 621–41.
- Frederiksen TK, Pinkas B and Yanai A. Committed MPC – maliciously secure multiparty computation from homomorphic commitments. In: Abdalla M and Dahab R (eds.). PKC 2018, Part I, volume 10769 of LNCS. Heidelberg: Springer, 2018, 587–619.
- Cascudo I, Cramer R and Xing C et al. Amortized complexity of information-theoretically secure MPC revisited. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 395–426.
- Couteau G. A note on the communication complexity of multiparty computation in the correlated randomness model. In: Ishai Y and Rijmen V (eds.). EUROCRYPT 2019, Part II, volume 11477 of LNCS. Heidelberg: Springer, 2019, 473–503.
- Keller M, Orsini E and Rotaru D et al. Faster secure multi-party computation of AES and DES using lookup tables. In: Gollmann D, Miyaji A and Kikuchi H (eds.). ACNS 17, volume 10355 of LNCS. Heidelberg: Springer, 2017, 229–49.
- Furukawa J, Lindell Y and Nof A et al. High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron JS and Nielsen JB (eds.). EUROCRYPT 2017, Part II, volume 10211 of LNCS. Heidelberg: Springer, 2017, 225–55.
- Araki T, Barak A and Furukawa J et al. Optimized honest-majority MPC for malicious adversaries – Breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2017, 843–62.
- Boyle E, Gilboa N and Ishai Y et al. Practical fully secure three-party computation via sublinear distributed zeroknowledge proofs. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 869–86.
- Ben-Sasson E, Fehr S and Ostrovsky R. Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 663–80.
- Polychroniadou A and Song Y. Constant-overhead unconditionally secure multiparty computation over binary fields. In: Canteaut A and Standaert F-X (eds.). Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 812–41.
- Beck G, Goel A and Jain A et al. Order-C secure multiparty computation for highly repetitive circuits. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 663–93.
- Gordon SD, Starin D and Yerukhimovich A. The more the merrier: Reducing the cost of large scale MPC. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 694–723.
- Franklin MK and Yung M. Communication complexity of secure computation (extended abstract). In: 24th ACM STOC. ACM Press, 1992, 699–710.
- Damga ̊rd I, Ishai Y and Krøigaard M. Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert H (ed.). EUROCRYPT 2010, volume 6110 of LNCS. Heidelberg: Springer, 2010, 445–65.
- Garay JA, Ishai Y and Ostrovsky R et al. The price of low communication in secure multi-party computation. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 420–46.
- Genkin D, Ishai Y and Polychroniadou A. Efficient multi-party computation: From passive to active security via secure SIMD circuits. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 721–741.
- Goyal V, Polychroniadou A and Song Y. Unconditional communication-efficient MPC via Hall’s marriage theorem. Cryptology ePrint Archive, Report 2021/834, 2021. https://eprint.iacr.org/2021/834.
- Escudero D and Dalskov A. Honest majority MPC with abort with minimal online communication. Cryptology ePrint Archive, Report 2020/1556, 2020. https://eprint.iacr.org/2020/1556.
- Ashur T, Cohen E and Hazay C et al. A new framework for garbled circuits. Cryptology ePrint Archive, Report 2021/739, 2021. https://eprint.iacr.org/2021/739.
- Bellare M, Hoang VT and Rogaway P. Foundations of garbled circuits. In: Yu T, Danezis G and Gligor VD (eds.). ACM CCS 2012. ACM Press, 2012, 784–96.
- Beaver D. Precomputing oblivious transfer. In: Coppersmith D (ed.). CRYPTO’95, volume 963 of LNCS. Heidelberg: Springer, 1995, 97–109.
- Huang Y, Evans D and Katz J et al. Faster secure two-party computation using garbled circuits. In: USENIX Security 2011. USENIX Association, 2011.
- Lindell Y and Pinkas B. A proof of security of Yao’s protocol for two-party computation. J Cryptol 2009; 22: 161–88.
- Malkhi D, Nisan N and Pinkas B et al. Fairplay – secure two-party computation system. In: Blaze M (ed.). USENIX Security 2004. USENIX Association, 2004, 287–302.
- Naor M, Pinkas B and Sumner R. Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM Conference on Electronic Commerce – EC’99. New York, NY: ACM, 1999, 129–39.
- Pinkas B, Schneider T and Smart NP et al. Secure two-party computation is practical. In: Matsui M (ed.). ASIACRYPT 2009, volume 5912 of LNCS. Heidelberg: Springer, 2009, 250–67.
- Kolesnikov V and Schneider T. Improved garbled circuit: Free XOR gates and applications. In: Aceto L, Damg ̊ard I, Goldberg LA, Halld ́orsson MM, Ing ́olfsd ́ottir A and Walukiewicz I (eds.). ICALP 2008, Part II, volume 5126 of LNCS. Heidelberg: Springer, 2008, 486–498.
- Zahur S, Rosulek M and Evans D. Two halves make a whole – reducing data transfer in garbled circuits using half gates. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 220–50.
- Choi SG, Katz J and Kumaresan R et al. On the security of the “free-XOR” technique. In: Cramer R (ed.). TCC 2012, volume 7194 of LNCS. Heidelberg: Springer, 2012, 39–53.
- Bellare M, Hoang VT and Keelveedhi S et al. Efficient garbling from a fixed-key blockcipher. In: IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2013, 478–92.
- Guo C, Katz J, Wang X and Yu Y. Efficient and secure multiparty computation from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2020, 825–41.
- Rosulek M and Roy L. Three halves make a whole? Beating the half-gates lower bound for garbled circuits. In: Malkin T and Peikert C (eds.). Advances in Cryptology – CRYPTO 2021, volume 12825 of LNCS. Springer International Publishing, 2021, 94–124.
- Kolesnikov V, Mohassel P and Rosulek M. FleXOR: Flexible garbling for XOR gates that beats free-XOR. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 440–57.
- Gueron S, Lindell Y and Nof A et al. Fast garbling of circuits under standard assumptions. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 567–78.
- Applebaum B, Ishai Y and Kushilevitz E. How to garble arithmetic circuits. In: Ostrovsky R (ed.). 52nd FOCS. IEEE Computer Society Press, 2011, 120–9.
- Ball M, Carmer B and Malkin T et al. Garbled neural networks are practical. Cryptology ePrint Archive, Report 2019/338, 2019. https://eprint.iacr.org/2019/338.
- Ball M, Malkin T and Rosulek M. Garbling gadgets for Boolean and arithmetic circuits. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 565–77.
- Ben-Efraim A. On multiparty garbling of arithmetic circuits. In: Peyrin T and Galbraith S (eds.). ASIACRYPT 2018, Part III, volume 11274 of LNCS. Heidelberg: Springer, 2018, 3–33.
- Ben-Efraim A, Lindell Y and Omri E. Optimizing semi-honest secure multiparty computation for the Internet. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 578–90.
- Aner Ben-Efraim A, Lindell Y and Omri E. Efficient scalable constant-round MPC via garbled circuits. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part II, volume 10625 of LNCS. Heidelberg: Springer, 2017, 471–98.
- Ben-Efraim A, Cong K and Omri E et al. Large scale, actively secure computation from LPN and free-XOR garbled circuits. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021.
- Lindell Y and Pinkas B. An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor M (ed.). EUROCRYPT 2007, volume 4515 of LNCS. Heidelberg: Springer, 2007, 52–78.
- Afshar A, Mohassel P and Pinkas B et al. Non-interactive secure computation based on cut-and-choose. In: Nguyen PQ and Oswald E (eds.). EUROCRYPT 2014, volume 8441 of LNCS. Heidelberg: Springer, 2014, 387–404.
- Brand ̃ao LTAN. Secure two-party computation with reusable bit-commitments, via a cut-and-choose with forge-andlose technique – (extended abstract). In: Sako K and Sarkar P (eds.). ASIACRYPT 2013, Part II, volume 8270 of LNCS. Heidelberg: Springer, 2013, 441–63.
- Frederiksen TK, Jakobsen TP and Nielsen JB. Faster maliciously secure two-party computation using the GPU. In: Abdalla M and De Prisco R (eds.). SCN 14, volume 8642 of LNCS. Heidelberg: Springer, 2014, 358–79.
- Huang Y, Katz J and Evans D. Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti R and Garay JA (eds.). CRYPTO 2013, Part II, volume 8043 of LNCS. Heidelberg: Springer, 2013, 18–35.
- Huang Y, Katz Y and Kolesnikov V et al. Amortizing garbled circuits. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 458–75.
- Kreuter B and Shen C-H. Billion-gate secure computation with malicious adversaries. In: Kohno T (ed.). USENIX Security 2012. USENIX Association, 2012, 285–300.
- Lindell Y. Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti R and Garay J A (eds.). CRYPTO 2013, Part II, volume 8043 of LNCS. Heidelberg: Springer, 2013, 1–17.
- Lindell Y and Pinkas B. Secure two-party computation via cut-and-choose oblivious transfer. In: Yuval I (ed.). TCC 2011, volume 6597 of LNCS. Heidelberg: Springer, 2011, 329–46.
- Lindell Y and Riva B. Cut-and-choose Yao-based secure computation in the online/offline and batch settings. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 476–494.
- Lindell Y and Riva B. Blazing fast 2PC in the offline/online setting with security for malicious adversaries. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 579–590.
- Nielsen JB and Orlandi C. Cross and clean: amortized garbled circuits with constant overhead. In: Hirt M and Smith AD (eds.). TCC 2016-B, Part I, volume 9985 of LNCS. Heidelberg: Springer, 2016, 582–603.
- Rindal P and Rosulek M. Faster malicious 2-party secure computation with online/offline dual execution. In: Holz T and Savage S (eds.). USENIX Security 2016. USENIX Association, 2016, 297–314.
- Shelat A and Shen C-H. Two-output secure computation with malicious adversaries. In: Paterson KG (ed.). EUROCRYPT 2011, volume 6632 of LNCS. Heidelberg: Springer, 2011, 386–405.
- Shelat A and Shen C-H. Fast two-party secure computation with minimal assumptions. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 523–34.
- Wang X, Malozemoff AJ and Katz J. Faster secure two-party computation in the single-execution setting. In: Coron J-S and Nielsen J-B (eds.). EUROCRYPT 2017, Part III, volume 10212 of LNCS. Heidelberg: Springer, 2017, 399–424.
- Nielsen JB and Orlandi C. LEGO for two-party secure computation. In: Reingold O (ed.). TCC 2009, volume 5444 of LNCS. Heidelberg: Springer, 2009, 368–86.
- Frederiksen TK, Jakobsen TP and Nielsen JB et al. TinyLEGO: An interactive garbling scheme for maliciously secure two-party computation. Cryptology ePrint Archive, Report 2015/309, 2015. http://eprint.iacr.org/2015/309.
- Frederiksen TK, Jakobsen TP and Nielsen JB et al. MiniLEGO: Efficient secure two-party computation from general assumptions. In: Johansson T and Nguyen PQ (eds.). EUROCRYPT 2013, volume 7881 of LNCS. Heidelberg: Springer, 2013, 537–56.
- Huang Y and Zhu R. Revisiting LEGOs: Optimizations, analysis, and their limit. Cryptology ePrint Archive, Report 2015/1038, 2015. http://eprint.iacr.org/2015/1038.
- Kolesnikov V, Nielsen JB and Rosulek M et al. DUPLO: Unifying cut-and-choose for garbled circuits. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 3–20.
- Nielsen J B, Schneider T and Trifiletti R. Constant round maliciously secure 2PC with function-independent preprocessing using LEGO. In: NDSS 2017. The Internet Society, 2017.
- Zhu R and Huang Y. JIMU: faster LEGO-based secure computation using additive homomorphic hashes. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part II, volume 10625 of LNCS. Heidelberg: Springer, 2017, 529–72.
- Choi SG, Katz J and Malozemoff AJ et al. Efficient three-party computation from cut-and-choose. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 513–30.
- Lindell Y, Pinkas B and Smart NP et al. Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 319–338.
- Lindell Y, Smart NP and Soria-Vazquez E. More efficient constant-round multi-party computation from BMR and SHE. In: Hirt M and Smith AD (eds.). TCC 2016-B, Part I, volume 9985 of LNCS. Heidelberg: Springer, 2016, 554–81.
- Poddar R, Kalra S and Yanai A et al. Senate: a maliciously-secure MPC platform for collaborative analytics. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021, 2129–46.
- Byali M, Joseph A and Patra A et al. Fast secure computation for small population over the Internet. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 677–694.
- Chandran N, Garay JA and Mohassel P et al. Efficient, constant-round and actively secure MPC: Beyond the three-party case. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 277–294.
- Ishai Y, Kumaresan R and Kushilevitz E et al. Secure computation with minimal interaction, revisited. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 359–78.
- Mohassel P, Rosulek M and Zhang Y. Fast and secure three-party computation: the garbled circuit approach. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 591–602.
- Byali M, Hazay C and Patra A et al. Fast actively secure five-party computation with security beyond abort. In: Cavallaro L, Kinder J, Wang XF, Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1573–1590.
- Canetti R, Sarkar P and Wang X. Blazing fast OT for three-round UC OT extension. In: Kiayias A, Kohlweiss M, Wallden P and Zikas V (eds.). PKC 2020, Part II, volume 12111 of LNCS. Heidelberg: Springer, 2020, 299–327.
- Masny D and Rindal P. Endemic oblivious transfer. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 309–326.
- McQuoid I, Rosulek M and Roy L. Minimal symmetric PAKE and 1-out-of-N OT from programmable-once public functions. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 425–42.
- McQuoid I, Rosulek M and Roy L. Batching Base Oblivious Transfers. Cryptology ePrint Archive, Report 2021/682, 2021. https://eprint.iacr.org/2021/682.
- Peikert C, Vaikuntanathan V and Waters B. A framework for efficient and composable oblivious transfer. In: Wagner D (ed.). CRYPTO 2008, volume 5157 of LNCS. Heidelberg: Springer, 2008, 554–71.
- Chou T and Orlandi C. The simplest protocol for oblivious transfer. In: Progress in Cryptology – LATINCRYPT 2015, volume 9230 of LNCS. Springer International Publishing, 2015, 40–58.
- D ̈ottling N, Garg S and Hajiabadi M et al. Two-round oblivious transfer from CDH or LPN. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 768–97.
- Naor M and Pinkas B. Efficient oblivious transfer protocols. In: Kosaraju SR (ed.). In: 12th SODA. ACM-SIAM, 2001, 448–57.
- Branco P, Ding J and Goul ̃ao M et al. A framework for universally composable oblivious transfer from one-round key-exchange. In: Albrecht M (ed.). IMA International Conference on Cryptography and Coding – IMACC 2019, volume 11929 of LNCS. Springer International Publishing, 2019, 78–101.
- David B and Dowsley R. Efficient composable oblivious transfer from CDH in the global random oracle model. Cryptology ePrint Archive, Report 2020/1291, 2020. https://eprint.iacr.org/2020/1291.
- Quach W. UC-secure OT from LWE, Revisited. Cryptology ePrint Archive, Report 2020/819, 2020. https://eprint. iacr.org/2020/819.
- Lai YF, Galbraith SD and de Saint Guilhem CD. Compact, Efficient and UC-secure Isogeny-based Oblivious Transfer. Cryptology ePrint Archive, Report 2020/1012. 2020. https://eprint.iacr.org/2020/1012.
- Beaver D. Correlated pseudorandomness and the complexity of private computations. In: 28th ACM STOC. ACM Press, 1996, 479–488.
- Boyle E, Couteau G and Gilboa N et al. Compressing vector OLE. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 896–912.
- Blum A, Furst ML and Kearns MJ et al. Cryptographic primitives based on hard learning problems. In: Stinson DR (ed.). CRYPTO’93, volume 773 of LNCS. Heidelberg: Springer, 1994, 278–91.
- Boyle E, Couteau G and Gilboa N et al. Correlated pseudorandom functions from variable-density LPN. Cryptology ePrint Archive, Report 2020/1417, 2020. https://eprint.iacr.org/2020/1417.
- Goldreich O, Goldwasser S and Micali S. How to construct random functions. J ACM 1986; 33: 792–807.
- Boneh D and Waters B. Constrained pseudorandom functions and their applications. In: Sako K and Sarkar P (eds.). ASIACRYPT 2013, Part II, volume 8270 of LNCS. Heidelberg: Springer, 2013, 280–300.
- Kiayias A, Papadopoulos S and Triandopoulos N et al. Delegatable pseudorandom functions and applications. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 669–84.
- Schoppmann P, Gasc ́on A and Reichert L et al. Distributed vector-OLE: Improved constructions and implementation. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1055–72.
- Augot D, Finiasz M and Sendrier N. A fast provably secure cryptographic hash function. Cryptology ePrint Archive, Report 2003/230, 2003. http://eprint.iacr.org/2003/230.
- Applebaum B, Damga ̊rd I and Ishai Y et al. Secure arithmetic computation with constant computational overhead. In: Katz J, Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 223–54.
- D ̈ottling N, Ghosh S and Nielsen JB et al. TinyOLE: Efficient actively secure two-party computation from oblivious linear function evaluation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 2263–76.
- Ishai Y, Prabhakaran M and Sahai A. Secure arithmetic computation with no honest majority. In: Theory of Cryptography, volume 5444 of LNCS. Berlin, Heidelberg: Springer, 2009. 294–314.
- De Castro L, Juvekar C and Vaikuntanathan V. Fast vector oblivious linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685, 2020. https://eprint.iacr.org/2020/685.
- Baum C, Escudero D and Pedrouzo-Ulloa A et al. Efficient protocols for oblivious linear function evaluation from ring – LWE. In: Galdi C and Kolesnikov V (eds.). SCN 20, volume 12238 of LNCS. Heidelberg: Springer, 2020, 130–49.
- Branco P, D ̈ ottling N and Mateus P. Two-round oblivious linear evaluation from learning with errors. Cryptology ePrint Archive, Report 2020/635, 2020. https://eprint.iacr.org/2020/635.
- Ghosh S, Nielsen JB and Nilges T. Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, art I, volume 10624 of LNCS. Heidelberg: Springer, 2017, 629–59.
- Chase M, Dodis Y and Ishai Y et al. Reusable non-interactive secure computation. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 462–488.
- Abspoel M, Escudero D and Volgushev N. Secure training of decision trees with continuous attributes. Proc Priv Enhancing Technol 2020; 2021: 167–87.
- Adams S, Choudhary C and De Cock M et al. Privacy-preserving training of tree ensembles over continuous data. Cryptology ePrint Archive, Report 2021/754, 2021. https://eprint.iacr.org/2021/754.
- Attrapadung N, Hamada K and Ikarashi D et al. Adam in private: Secure and fast training of deep neural networks with adaptive moment estimation. Cryptology ePrint Archive, Report 2021/736, 2021. https://eprint.iacr.org/2021/ 736.
- Braun L, Demmler D and Schneider T et al. MOTION – A framework for mixed-protocol multi-party computation. Cryptology ePrint Archive, Report 2020/1137, 2020. https://eprint.iacr.org/2020/1137.
- Knott B, Venkataraman S and Hannun A et al. CrypTen: secure multi-party computation meets machine learning. In: Proceedings of the NeurIPS Workshop on Privacy-Preserving Machine Learning, 2020.
- Nikolaenko V, Weinsberg U and Ioannidis S et al. Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2013, 334–48.
- Wang Q, Ma Q and Li J et al. Enable Dynamic Parameters Combination to Boost Linear Convolutional Neural Network for Sensitive Data Inference. Cryptology ePrint Archive, Report 2020/961, 2020. https://eprint.iacr.org/ 2020/961.
- Liu J, Juuti M and Lu Y et al. Oblivious neural network predictions via MiniONN transformations. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 619–31.
- Chandran N, Gupta D and Rastogi A et al. EzPC: Programmable and efficient secure two-party computation for machine learning. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P), 2019, 496–511.
- Simonyan K and Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition, 2015. https: //arxiv.org/pdf/1409.1556.pdf
- Boemer F, Cammarota R and Demmler D et al. MP2ML: A mixed-protocol machine learning framework for private inference. In: Proceedings of the 15th International Conference on Availability, Reliability and Security – ARES’20. ACM, 2020.
- Dowlin N, Gilad-Bachrach R and Laine K et al. CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning - ICML’16, 2016, 201–210. https://JMLR.org.
- Huang G, Liu Z and Van Der Maaten L et al. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 2261–69.
- Dalskov A, Escudero D and Keller M. Secure evaluation of quantized neural networks. Proc Priv Enh Technol 2020; 2020: 355–75.
- Howard AG, Zhu M and Chen B et al. MobileNets: Efficient convolutional neural networks for mobile vision applications, 2017.
- Spagnolo F, Perri S and Frustaci F et al. Energy-efficient architecture for CNNs inference on heterogeneous FPGA. J Low Power Electron Appl 2020; 10: 1.
- Riazi M S, Weinert C and Tkachenko O et al. Chameleon: a hybrid secure computation framework for machine learning applications. In: Kim J, Ahn G-J, Kim S, Kim Y, L ́opez J and Kim T (eds.). ASIACCS 18. ACM Press, 2018, 707–21.
- Krizhevsky A, Sutskever I and Hinton G E. Imagenet classification with deep convolutional neural networks. Commun ACM 2017; 60: 84–90.
- Chaudhari H, Choudhury A and Patra A et al. ASTRA: High throughput 3PC over rings with application to secure prediction. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop CCSW’19. ACM, 2019, 81–92.
- Wagh S, Gupta D and Chandran N. SecureNN: 3-party secure computation for neural network training. Proc Priv Enh Technol 2019; 2019: 26–49.
- Koti N, Pancholi M and Patra A et al. SWIFT: super-fast and robust privacy-preserving machine learning. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021.
- He K, Zhang X and Ren S et al. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–78.
- Wagh S, Tople S and Benhamouda F et al. FALCON: Honest-majority Maliciously Secure Framework for Private Deep Learning, 2021. https://arxiv.org/abs/2004.02229.
- Byali M, Chaudhari H and Patra A et al. Flash: Fast and robust framework for privacy-preserving machine learning. Cryptology ePrint Archive, Report 2019/1365, 2019. https://eprint.iacr.org/2019/1365.
- Koti N, Patra A and Rachuri R et al. Tetrad: Actively Secure 4 PC for Secure Training and Inference. Cryptology ePrint Archive, Report 2021/755, 2021. https://eprint.iacr.org/2021/755.
- Carpov S, Deforth K and Gama N et al. Manticore: Efficient framework for scalable secure multiparty computation protocols. Cryptology ePrint Archive, Report 2021/200, 2021. https://eprint.iacr.org/2021/200.
- Aly A, Orsini E and Rotaru D et al. Zaphod: Efficiently combining LSSS and garbled circuits in SCALE. In: Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC’19. ACM, 2019, 33–44.
- Rotaru D, Smart NP and Tanguy T et al. Actively Secure Setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300, 2019. https://eprint.iacr.org/2019/1300.
- Rotaru D and Wood T. MArBled circuits: mixing arithmetic and Boolean circuits with active security. In: Hao F, Ruj S and Sen Gupta S (eds.). INDOCRYPT 2019, volume 11898 of LNCS. Heidelberg: Springer, 2019, 227–49.
- Escudero D, Ghosh S and Keller M et al. Improved primitives for MPC over mixed arithmetic-binary circuits. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 823–852.
- Boyle E, Chandran N and Gilboa N et al. Function secret sharing for mixed-mode and fixed-point secure computation. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 871–900.
- Boyle E, Gilboa N and Ishai Y. Secure computation with preprocessing via function secret sharing. In: Hofheinz D and Rosen A (eds.). TCC 2019, Part I, volume 11891 of LNCS. Heidelberg: Springer, 2019, 341–371.
- ISO/IEC JTC 1/SC 27. ISO/IEC WD 4922-2.3 Information security – Secure multiparty computation – Part 2: Mechanisms based on secret sharing, 2021. https://www.iso.org/standard/80514.html.
- National Institute of Standards and Technology (NIST). Multi-party Threshold Cryptography, 2021. https://csrc. nist.gov/Projects/Threshold-Cryptography.
- National Institute of Standards and Technology (NIST). Privacy-enhancing Cryptography, 2021. https://csrc.nist. gov/Projects/pec.